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FOREWORD

The Twenty-Sixth Conference on the Design of Experiments (DOE) in Army
Research, Development and Testing was held 22-24 October 1980 and had
as its host the U. S. Army White Sands Missile Range (WSMR). Dr. Richard
H. Duncan, Technical Director and Chief Scientist, WSMR, made many of the
initial plans for this meeting. In particular, he contacted Dr. Harold Law,
Associate Academic Vice-President, New Mexico State University and made
arrangements with him to hold the conference at his university. The
Army Mathematics Steering Committee (AMSC), sponsor of these conferences,
would like to thank New Mexico State University for providing such
excellent facilities for this meeting.

Dr. Duncan asked Ms. Peggy Hoffer, of the WSMR Plans Office, to serve
as chairman on Local Arrangements for this conference; and Mr. Robert
Green, of the Instrumentation Directorate, to handle any technical
problems associated with the program. These individuals, together with
many other members of the WSMR, helped make this, the 26th Conference,
a very successful and interesting meeting.

The Subcommittee for Probability and Statistics, chaired by Dr. Douglas
B. Tang, is responsible to the AMSC for conducting these Army conferences.
Dr. Tang asked Dr. Frank E. Grubbs to be Chairman of the Program Committee
for the 1980 conference. One of the first acts of this committee was to
select "Data Analysis" as the theme of this meeting. This was a wise
choice because of the large amount of analytical and statistical work in
testing and modeling performed within the many agencies located on the
base of the host installation. At the first meeting of the Program
Committee, the following national known scientists were selected as the
invited speakers for this year's conference.

Speaker and Affiliation Title of Address

Professor Francis J. Anscombe How Far to go in Looking at Data
Yale University

Dr. Toby J. Mitchell Design of Eyperiments
Union Carbide Nuclear Division
Professor W. J. Conover The Rank Transformation as a Robust
Texas Tech University and Powerful Tool for the Analysis

of Experimental Data

Professors James R. Thompson, The tNonparametric Estimation of
Chih-Chy Fwu, and Richard Probability Densities in Callistic
A. Tapia Research
Rice University

Professor Victor Solo Engineering Time Series Analysis
Harvard University

Professor Richard A. Johnson '!ress-Strenuth Models for Pelia!'1ity-
UnivcrsIty of Wisconsin Overview ant Recent Advances

ili



Professor Badrig Kurkjian, Professor of Statistics at the University of
Alabama, is at the present time, chairman of the committee to select the
recipient of the Samuel S. Wilks Memorial Medal. On 19 June 1980 he
advised Dr. Robert Launer, secretary of the Design of Experiments Conference,
that Dr. W. Allen Wallis, Chancellor and Professor of Statistics and
Economics at the University of Rochester, had been selected as the 1980
Wilks Medalist. This distinguished scientist richly deserves this honor
for his contributions to applied statistics.

On 20-21 October 1980, just preceding the start of the DOE conference, a
special tutorial on Applied Regression Analysis was held. This tutorial
was designed for engineers, scientists and statisticians who are involved
in analyzing least squares data, the associated statistical inferences
and model building. The instructor for this informative course was
Professor Norman Draper, Department of Statistics, University of Wisconsin
and the Mathematics Research Center.

The AMSC has asked that these proceedings be distributed Army-wide to
enable those who could not attend this conference, as well as those that
were present, to profit from some of the scientific ideas presented by
the speakers. The members of the AMSC would like to take this occasion
to thank all the speakers for their interesting presentations and also
the members of the Program Committee for their many contributions to
this scientific meeting.

Program Committee

Carl Bates Robert Launer (Secretary)
George E. P. Box Douglas Tang (Chairman,

Prob. & Stat. Subcommittee)
Larry Crow Malcolm Taylor
Walter Foster Langhorne Withers

Frank E. Grubbs (Program
Committee Chairman)
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Dear (onference Participant:

It is our pleasure to have you attvnd the rhenty-Sixth Conference on the
Desigin of Experimrrents in Arm. Rtesearch, Developinent, and Testing. 'e hope
this conference will provide new and relevant information wiuch will ht
useful to you in your future enidc-ivor,.

During yntJ¢ stay in Las Cru.ces we a Io hope you w I I take h, 4peNrtU I ty
to •isit the rest of the New *xicou Statet UnIvversity , ci.sI in.-' White
Soinds Mi ,stile RAng,.,

%ew Mexico State )niversity. t'vidcd in 1-98-,8 has grown into a -Tujor
institution ot higier education. In its developoerit. the (Iniv--rstv has
preserved many of the traditions of its land-grvnt origin wh! 7v rmvme
toward increased evphasjs of the htuuni:ies, Il.beral -orr.. .n! natural
sciences. The misiton of New MIexicc State iverri.t-. iý :o henef.Z
society through education, rest-arch, and public service. lo ":-rv out
its mission, the llniversity oeprares the Agrih:lttral Lq'erirwn'al
Station, the Arts and Sciences Research Center, the C..fr 'or .Susi'ess
Research and Service. the New Mxico 'nerv Institute, t %k- 'e i '.onico
Solar riergy Institute, the Lnt:ineerijig !..,peruneit Stat , %nicnenta.-n
Laboratory, the Plhvsical Sci' nte I.ihor.arvr, Ind rin~y vther ed;:iat enal .
research, and service centers.

White Sandy Itfisi le ,ange. el'tt.,h zi-,Ied .IS White &.M.d PIVlItý ,;rcTund on
9 July 1945, reprie;ents the i ,. . %.,- iIler c,,n !,,oi 2:' , t•.ed
States .\rmv lover two mi IIi, .,r.," . lgethh-r with Its re"vte "aun.-n
areas in Utah, it allows for mi ssile IfIihts ,z .hatlt ;tn nile. Si;::cc
Its establ LSlMle1tn , tile R ha:r i.e ,- ek,!VCd 111to ,:I' . - :',, ,tai .:c '
fac I Ities for use" by thie Wince:.c .' fnt'd Rt.,, .irc! Pi, I cts; k4,,ncy.-* A.y,
Naw' . Air Iorce. Vition, Ifld Ind tila, it & ,Il .iv, Lknllirr.t en . L, r ,mi trient
of IneWIRv. agIw orhcr%.

We hoh oij I wil o % , Al a', .i-i,, 't , i li , b11 -;I l

CtS ;tnd in Wi Ge ne ra l Ntis•" , ,,i'.ni.
IN ,\n;.lY he te A va',ale C p i%:,

Best Available Cop,,
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LOby J. Mit:hell. Union Carbine Nuclear Divi•ion, Oak
Pidge, Tennessee

!200-1330 L1. UC H
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HOW FAR TO GO IN LOOKING AT DATA*

F. J. Anscombe
Yale University

New Haven, Connecticut

All ;ainlysis of S1:MtisLical data involvws a balancing feat. On tli- one

hand, we do not examine the data with an empty mind, there are specific

questions we want to obtain answers to (that's why we assembled the data in

the first place), we have preconceptions about the data, in examining the

data we should not forget what we were looking for. But on the other hand,

we should have an open mind, we should let the data speak for themselves, we

should not just assume that some theoretical model is appropriate without

checking. How far should we go in responding to unexpected features of the

data, how far slhould we let the data control the kinds of things we do; or

htow far should we trust our prtconcvpLtion?

Now let me digress from that theme for just a moment. I have not only

been invited to speak at this conference, I have been asked to give the key-

note address. I think that a keynote address also involves a balancing feat.

On the one hand, a keynote address should be inspirational, or if riot quite

inspirational at least interesting, or if not quite interesting at least

fairly intelligible. On the other hand, it is not one of the regular invited

papers or other real business of the conference. It should not try to steal

their thunder. It should not be too weighty or indigestIble--it should be

hors d'oeuvre rather than a main cotirse. To perform this balancing feat, I

shall raise some questions that do not scum to be talked about much, but

which all of us are aware of, and which therefore should be somewhat inter-

esting to consider. In the interest of digestibility, I shall mostly refrain

*T~reparvd in connection with re,.earch supported by the Office of Nival

Research (contract N00014-75-C-0563).
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from answering the questions--because in most cases I have no idea how to

answer them. But at the end of Lhe talk I will give a little information

about one of these questions that is possibly not well known, and to that

extent the talk will have a little content.

Forecasting time series. Earlier this year at a meeting I heard a talk on

short-term forecasting of business time series. The talk. which was very

well delivered, threw out a challenge rather vividly, and I have thought

about it quite a bit since. I'd like to indicate the gist of the talk. (I

have not seen any write-up of the talk, what I'm saying may not adequately

represent the speaker's views, and so I will refrain from mentioning his

name.) The situation considered was this. He had several time series re-

lating to a business company, production, sales, various things, and also

public economic series; I think they were all quarterly series, and they

went back a good many years. The object was to forecast some of the series

for the next 1 or 2 or 3 quarters after the last observed value. A standard

method would be to use Box-Jenkins technology--fit a pjrametr'c class of

models to the data by maximum likelihood and use the fitted model to make

the forecast. The parametric class is quite wide, and if in fact it is wide

enough to represent reality adequately this procedure will be just about the

best possible. The procedure is fully describable, or programmable, and

therefore can be implemented completely by Lomputer. The speaker didn't want

to do that. He had imbibed the spirit of John Tukey's Exploratory Data

Analysis. (Tukey does not discuss forecasting in his book, and I do not know

whether what the speaker did was similar to what Tukey might have done.) Ila

plotted his t im' series and totok ;. e',, I'k At thini. 1I' nut hced that. iuiiJnd

2
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about 1973-74 the series seemed to change character. Something happened to

the economy (there was the oil crisis), and he judged that subsequent behavior

of the series was unlike the preceding behavior. So he felt that only data

after the change should be used in forecasting, although there were not many

readings, and he proceeded to make (I think) some simple extrapolations by

eye. He expressed the opinion that it was better to do a rough-and-ready job

with just a few relevant readingq than a fancy job with a lot of readings

that were mostly irrelevant. If indeed there was a big enough change in the

functioning of the economy in 1973-74 to make preceding data uninformative

about later behavior, then he c:rtainly had a case. How can you tell? it's

a question about whether reality is better described in terms of Box-Jenkins

parametric models, or better understood by someone who makes judgments based

on plots and general background information, judgments that cannot (I think)

be computer-programmed. The speaker seemed to think that obviously the

second was the case. I don't think it's obvious either way. Some things

could be done to investigate the matter, but nothing very easy or very

quick.

How much should we look at the dat-i? Everyone agrees that we must sometimes,

to some extent, look at the data. Suppose we entorrain some probabilistic

modul, or more modestly some way of thinking about ii ihenome'non and possible

observations. If this model or way of thinking il; rIot vacuous, there are

some logically possible observations that conflict with it--otherwise it

tells us nothing. Therefore it behooves us to see whether the observations

are consistent. Particular I•stank-s (if Ahi•i ;tr. vwr.: weli known.

So we must look at the observations a hit. "The troublc is, it Is 4.a.
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to be puzzled and misled if we look at them very much. A sample (from a

population or probability distribution or stochastic process) has many

individual features that do not reflect its source and would not persist

if the sample size were much increased. Given adequate computing power,

the question of how much to look, how far to go, outstrips available sig-

nificance tests or other critical apparatus that might aid our judgment.

To refrain from examining the data because we do not know how to evaluate

what we see, that surely is foolish. To assume without evaluation that

everything seen is important, is foolish too.

The matter is brought home to me whenever I take a small random sample

from some distribution or process. Suppose I generate 50 observations from

N(0,1) . One of the readings is bigger than 3 and the estimated variance

is large. I take another sample and this time there are no outliers, the

largest reading is only about 1.5 and the sample looks as if it came from

a uniform distribution. I wonder if my program is wrong, so I go over the

program again and I takeamuch larger sample and make a goodness-of-fit Lest,

and then things seem O.K.

I'd like to show what happened the last time I tried a simulation. I

was wanting to illustrate the difference between a stationary random sequence

that was jointly normally distributed (jointly Gauss•ian) and a stationary

random sequence with the same autocorrelations (same moments of first and

second orders) and marginal normal distribution for any one member that was

not jointly normal and would have a less temporally homogeneous behavior.

The simplest examples would be Markov se,juences, and I began with a ]ag-l

serial corrlat ion coefficient equial l o . i gurv I -qhows (lie first 60

4



members of a jointly normal sequence; and Figure 2 shows the first 60

members of a type of "Jump" process which behaves in stretches like a

jointly normal random sequence with a bit higher lag-i serial correlation

(actually 3), but every now and then there is a break and the next reading

is independent of its predecessors---sometimes at the break there is a big

jump. So the two sequences should look similar except for occasional big

jumps in the second process. Figure 2 looks as it is expected to, but not

Figure 1---the first 20 readings move around a lot (with one very big jump

between the tenth and eleventh reading), then the later readings are much

less mobile. I can't help thinking that the speaker I heard on time-series

forecasting would have identified a change in the economy round about

reading no. 20.

I was so disgusted with the untypical behavior of the first plot that

I scrapped them both and tried again, this time with a higher lag-i serial

7 () which I thought would cramp the style of the jointly normal* ~correlation()whhIthuhwodcrmthsylofteoilynra
8

process and make it behave better. Both plots (Figures 3 and 4) looked

reasonably "typical" of what I expected. (But note the apparent change in

direction of the jointly normal plot around reading no. 33.)

How many explanatory variables in regression? The question arises in dif-

ferent connections---sometimes very troublesome, sometimes easy to answer.

The easy case is a planned factorial experimenL of the cla-:,ic Fisherian

kind designed to permit estimation of the main effects of various factors

and all sorts of interactions. Often what happens is that a few main effects

and perhaps a few interactions are large and interesting zad need to be duly

reported and understood, while the rest are samll and for most purposes c)n



be ignored---it wasn't known in advance which effects would be large and

interesting, which small and ignorable. Usually the effects are orthogonal;

their meaning does not depend on what other effects are estimated. Provided

there are a few degrees of freedom for estimation of error, and provided we

don't challenge the appropriateness of the model (structure) being fitted,

there is an easy answer to the question, how many effects to estimate:

estimate them all and then ignore any that aren't interesting.

The proviso that the appropriateness of the model being fitted isn't

challenged is important. I've already sai. hat it behooves us to verify

that models being fitted are consistent with the data. Supoos2 we want to

check wievter the (hypothetical) unexplained "error" term in the model seems

to be something like i.i.d. normal. The obvious thing to do is calculate

residuals from the estimated effects or regression relation. Now closely

the residuals reflect the hypothetical errors in the model depends on how

many effects or regression coefficients have been estimated. If many have

been estimated, there is a central limit effect--- each residual is an average

of many errors, and does not principally reflect one. To have informative

residuals, small effects should not be estimated but left in the residuals.

[The talk concluded by presenting some material from Appendix 2 of the

author's forthcoming book, C omptutinrFjn Statistical Science throughAPL

(Springer). A rule for deciding how many effects to estimate, due to

J. W. Tukey, for the purpose of obtaining informative residuals, was described.

Then two further rules were described, one of them based on C. L.. Mallows's

C statistic, designed to permitt good prediction of iinohserved values of the

dependent variable. It was pointed out that these two purposes, informative

residuals and good prediction, though at first glance quite different, are

really closely related, and the three rules often lead to tLe same re';ult.
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THlE USE. OF RI1D11 REGRELSSION INJ TRAJECTORY ESTI;*ATJON

William S. Agee and Robert H. Tuorne
Mathc-rnatical Services Briranch

Data Sciences Division
US Army -n hite Sands ',iissile Range

Wrhi te Sands Missile Ranne, New Mexico 88002

AB3STRACT. Conibining oblservations fron several different trajectory
*measuring instru~ments we wiant to estimate thle cartesian position (velocity)

coordinates of a trajectory at possibly a large nuu-ber of tine points. Since
the measuring systEr-s are subject to systc-!atic mceasure:-ent errors as well as
randcoi I.reasurei-2nt errors, in addition to estiv-.ating the trajectory coordi-
nates lie also v.ant to estimate thle measurement biases. The resulting estirla-
tion problem is a combined linear and nonlinear estimation problemn in which the
trajectory coordinates appear As nonlinear parameters in the measurements and
the biases appear as linear paramieters in the measurci-ents. In practice we
have found that it is often necessary to statistically constrain the mleasure-
lnent bias estimates by the use of Bayesion priors. These priors are assumed
to be normal usually with mean zero. Thus, the specification of the priors
is reduced to the specification of a prior variance for each measurement bias.
There are no rules for choosing these prior variances and use of these guesses
may result in rather poor bias and trajectory estimates in which the esti'mated
bias vectors are too long and sone of the biases nay be of the wrong sign. W e
have developed the use cf techniques very similar to ridge regression to treat
this probler. The use of ridge regression for this problem results in signifi-
cant fimprovomonts in both the trajectory and bias estimates. We demonstrate
the use of this technique on several real trajectory estimation problems which
have arisen at l4S';. In these problems we are estimating a trajectory and
measurciierit biases using measurements fro:; several radars. In some of these
problems wie also have measuremfents from optical tracking systems which, since
they are more accurate and precise than radar, wie use to prove the value of
the ridge regression technique for obtaining improved radar trajectory and bias
estinm~tes. In using this ridge regression technique vie have been successful
in choosing a good value of the ridge paramoeter by using the ridge trace method
propusrod by Hoeri and Kcennard. Tile ridge trace, although it is successful in
obtaining a good value of the ridge oaraic'-itcr, is unsatisfactory in an auto-
matic data processirg procedure such as trajectory data roJuction since a
ridge trace requires humnan visual interpretation. *.o have tried sonie autc-
matic rieitlods f~or selection of a good rildgc para~oeter value. So far, vie
have been unsuccessfull in these attempts to develop an automatic muthod foi-
choosing a good ridge parameter and %..e %.ould like to have this considered as
a clinical paper for the purpoes of obtaining somne nov. ideas for developing
such a method.

1. TRAJECTORY EST];'ATIM. fleasurejiwents of range, azimuth, and eleva-
tion froma several "AtmeFrent radars are ticed to estii.ýate thc cartesian posi-
tion coordinates of d vehicle trajectory AL a sequence of tinies, t,, i = 1, N
which cover the entire trajectory. Sin'ce the i.ieiisurc Jen ts are sublect to
systc';at ic errcrs as i..el 1 as rando,,i mv;oasurc; iicnt orrorý , we also want to c'sti-
mate I h. sys.tc ntic cerror pdr~l.1,tcm-5 or Ha sus it, a16Hi ionl to thle trajectory

* cu''rd11n.!U.'s. I hr, ros u I tni m oSt imiat en prcl'locii is a c.-;4,imid 1 in;ýa and non-
* 1inear1 rr ti: aIti on prvble'.m III .hich tho tra1joctor-Y coordilnates a;iepar* AS tion-

1 ntr ~'~in Llv, wi,'vu:c -cAt oind OIL bitasw. *'rPVer as linciar Para-
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Let h(•i) be a measurement function where 3i is the cartesian position

vector to the trajectory at time t. If we have 14 different radars observing
i* th

the trajectory, then a = 1, 311. For a range measurement from the P- radar
hQ•) [x.p2 +2 2 1/2{

ha(7) = E(+ (-Y)+ z )-Z 2) 1/ 2)

where (x p, yp, z p) are the cartesian coordinates of the

origin of the local cartesian coordinate system at the p- radar. For an azi-

muth measurement from the pl- radar the measurement function is

xi - Xp

thFor an elevation measurement from the ph- radar

h(i) = tan-1  Z Z (3)
[ (xi'xp) + (yi-Y p) /2

Let z,(ti) denote the observed value of the a!_h measurement. The observa-

tions are modeled as

zQ(tI) h0 (•i) + bc + e(i) (4)

where b is a constant measurement bias and e (i) is a zero mean, random

measurement error. Let b be a 3M-dimensional bias vector bT [bl b2--b3M].

Then the measurement model can be represented as

Z0 (ti) = ha(Xi) + s b + e.(i) (5)

where s is a row vector with a one in the ..h- entry and zeros in all other

entries.
Si a [0 0 -- 0 1 0 -'--03 (6)

cth+..oi
ositiontton

Let R (ti) be known variances of the random measurement errors, e (ti). A

normal prior with mean zero and dia onal covariance matrix P will be assumed
for the bias vector b, P = diag (P), 1 = I, 3M. The estimation problem to

be considered is to minimize,

12



N 31-1 2 1
Z E (z (ti)-h 10(7i)-S b) R-a(tj) + b p'b (7bi=1 ca- . o

with respect to 'i. i 1, N and b. Differentiating (7) with respect to -x

and b results in the nonlinear normal equations

310
31Z H (;(i)R-l(ti)(zQ{ti)-hQ(; )-S b^)" 0 -1 -- I.=lN()

N 3M
N3 STR-l(t .)(z (ti)-hu Cx)-Sob) - p =b 0 (9)

ai C1 i

where xi is the estimate of 7i and b is the estimate of b. In (8) H(-)

ah (ti )
is the derivative, - . In order to solve the normal equations, they

are linearized about a guess trajectory, xi( . Let xis 1 1, N and b
satisfy (8), i.e.,

3MZ H(x i )R(ti)(z,(ti)-h.(xi(s))-S b(s)) 0 1 = 1, N (10)

If (8) is linearized about xi(S) and b(S), we obtain

(s) A-T (b(S)) 1)(xi'xl~s) :" IiN+l (l

where

3M T (s) s)

A ,I H T(xis))R (t )HCx s) (12)

T Z S TR-1(t )H (x (s)) (13)AI,N+I al I) x

0=
about x. and solving for I)gives the result,

13
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sN 3M T-1 N T A- 1 A
.b(S= (p-+ E Z- S Fa (t )S 0-i A,1 N+l j ,N+1

P1 al 0=1

IN 3M T~ h(iS
SS (TiR ) I ( t ) )-S b(s))

N s31t T11(14)

1=11 aC

(11) and (14) for x - x(s) and b - (s) are the basic equations for traject-

ory estimation. Th! solution to the normal equations are obtained by suc-
cessive relinearization and solution of (8) and (9).

2. APPLICATION OF RIDGE REGRESSION. Although there are no convergence
problems in solving the normal equations iteratively for the N-station radar
case, another problem which is fairly common in the solution of linear least
squares problem occurs quite frequently in trajectory estimation. Very

often, the estimate of the bias vector, b, converges to a solution which
several of the components are too large. Sometimes the bias solution is
obviously erroneous. One obviously erroneous case which frequently arises
is that the elevation bias components will all he large and of the same sign.
This problem of the estimated bias vector being too long is usually attri-
buted to multicollinearity among the predictor variables in the linear least
squares. The problem in the linear estimation case is often successfully
treated by some method of biased estimation. This problem has not been prop-
erly recognized or successfully treated when it arises in trajectory esti-
mation. Although the existence of these erroneous bias estimates have been
recognized in trajectory estimation, the source of the difficulty was not
properly identified. Some workers in trajectory estimation have stated that
the existence of the problem demonstrated the need to specify a prior distri-
bution in order to "tie down" or statistically constrain the bias estimates.
Hence, the reason we have included the prior in (7). It doet not take much
experience in using these priors for radar trajectory estimation to reali:-e
that the problem of inflated bias estimates is usually as much present with
as without the prior. There are no rules for choosing a good prior. We at
first attempted to treat this problem by introducing a ridge parameter A.
Instead of minimizing (7), we would minimize

N 3M(Z (ti)_h (7,-S b) Rl(ti) + (l+x)bTp (15) L

Minimization 1f (15) merely introduces a factor of (1 + X) in (14) wherever

P-1 appears. We denote the ridge solution as b6(). The ridge solution re-

duces to

Wb(x) - o) -X(Q+XP')'IP-b(o) (16)

14



where

- N 3M TRI U T I-
SQ =p + E E S R (t.)S - iA A- (17)

iI Ci1 a C j tN+l i ,N+l

3. CHOOSING THE RIDGE PARAMETER-THE RIDGE TRACE. How should the ridge
parameter X be chosen? The graphical ridge trace method proposed by Hoerl
and Kennard [1] is a standard method for choosing X. Consider the following
example from W.SIR data. We have three radars, R122, R123, and R395 tracking
a level flying target flying at about 30000 ft. The graph of Figure 1 shows
the relative geometry of the target trajectory and radars. The diagonal ele-
ments of the prior covariance matrix used in this example were P11 P4
P7 7 = 1 (Range bias elements), P2 2  P33  / 2,7 = 1 2 22 P 3 2 ), P55 - PGG : II .12),

and P68 = P99 R 395), where R. is the average range from the j- radar

to the trajectory. Figure 2 is a ridge trace for this example. Note X =
-1 corresponds to the least squares solution. We quickly learn two things
by examination of this ridge trace. One, the range bias estimates do not
stabilize from which we conclude that a ridge parameter should not be used
on the range bias elements. Two, we would also want to conclude from the
ridge trace that there is no benefit to be derived from the use of a prior
on any of the range bias terms. Note that stability of the estimates occurs

* near the least squares solution which corresponds to X = -1. The Bayesian
solution with the prior specified which corresponds to X 0 is not plotted
on the graph. This solution has the bias estimates,

R122 R123 R395

Range (ft) 27 23 -20

Azimuth (mr) -. 02 -. 06 .12

Elevation (mr) .09 -. 06 -. 05

These estimates are not in the stability region of the ridge trace. Figure
3 is a ridge trace for this same example but without a prior on the range
bias terms. The range biases are now only indirectly affected, i.e., through
the angle bias estimate, by the ridge parameter A. The value X a -. 99 ap-
pears to be a good choice of the ridge parameter. The following table con-
finns that large errors are present in the least squares bias estimates and
that the ridge estimates with X - -. 99 provides a much better solution. The
optics solution is derived from the azimuth and elevation measurements from

several optical tracking cameras. The camera measurements are inherently
much more precise than the radar measurements; hence, we often use an opti-
cally derived solution as a standard against which we compare radar perform-
ance.

15
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j

R122-R R123-R R395-R R122-A R123-A R395-A R122-E R123-E P39S-E
Optics 157.3 152.9 80.3 .05XlO" 3  .02XlO" 3  .09XlO" 3  .11XlO3 -. o8Xll"3 .. O;Xilc 3

Ridge (X--.99) 151.8 148.2 72.0 0 -.06X10 .3  3 .12X10" -. 09X10 3  3.07X10"

Least squares 118.3 114.8 63.7 .116X1O_ 3 .0U X10 3 .14BX1O'.7 3 -. 947X1O3 _.538x10 3

Even though we believe that the ridge solution provides much better
trajectory and bias estimates from an Nl-station radar solution than does
the least squares solution, we have tried and are still trying to develop
a practical method of using ridge regression in trajectory data reduction.
The graphical ridge trace method of lHoerl and Kennard for choosing A is
unsatisfactory for trajectory data reduction. The quick turnaround time
required by range users for trajectory data products makes the ridge trace
method, which requires human intervention, impractical for routine use.
An automatic method for choosing a good value of X is required in order
that the ridge method be practical for trajectory data reduction.

4. CHOOSING THE RIDGE PARAMETER-MINIMIZING THE MEAN SQUARE ERROR.
One automatic method for choosing ridge parameters is an iterative method
proposed by Hoerl and Kennard [2]. This method is developed for choosing
the ridge parameter vector in a generalized ridge regression problem. For
the generalized ridge regression in the radar bias estimation application,
we want to choose a parameter vector X having components xi, i = 1, 2M.
Thus, we will have a separate ridge parameter for each of the angle biases
but none for the range bias terms. Suppose we arrange the order of the
biases so that the angle bias-s appear in the first 21f positions of b and
the range biases io the last M positions of b. We partition the bias esti-

mation equation, Qb = U as

In the above we have replaced the matrix Q defined in (17) by the slightly
different definition,

N 3M sTRItS_ N
N r RI (tJS - NAN+IAi,N A (19)

Note that we have abandoned the use of priors in the definition of Q.

Suppose we transform the bias vector ba as b = Ta where T is orthogonal.
We can eliminate br from (18) obtaininga

19



br aQ(ur-RT;) (20)

and

T(Q -RTQr1 R)TB TT (uaRTQ Ur) (21)
a r a- rrU (1

we choose T so that

TT (Q-RT QrR)T r (22)
a r

where r diag (y). Then we have

rs = TT (U-RTqrU) (23)

We now form the generalized ridge regression as

-C --D()Co), (24)

where D(x) = diag (xi) and a(o) is the least squares solution.

The iterative method of Hoerl and Kennard attempts to choose the Xi to mini-

mize the mean square error in O(X). Thus, we want to minimize

E[O(X)-S) O )-0) (25)

where 8 is the true parameter value. Minimizing (25) results in the choice of
the optimal A as

(26)

Since the true values, Bi, are unknown, (26) cannot be implemented exactly.

Hoerl and Kennards approximate implementation of (25) uses the iteration,

S( K+ 1) =(1/-(K) )2 (27)

where B(K) is obtained from (24) as

(o-( (28)

with 6i() = Oi

Hemmerle [3] has shown that a closed form solution of this iterative scheme
is easily obtained. Hemmerle shows that the iteration converoes to e, for

22

0o< (1/yjra1 (o)) 5 1/4 where
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(1-2e°> / e
e 2e0 0 (29)

and eo = /Yi2 i(o). For eo > 1/4, i 0(K) 0.

For our three radar example applications, we obtain the following data
for the application of the above method.

2
aa(o) Bi(o) Yi 1i (o)

.116XI0 -. 43181174XI0-4 4.1857985X10lO 78.04 -. 42616219X10 4

-. 737X10"3 -. 54950324XO0-4 5.7866501XI0I 0  174.73 -. 54634011XI0"4

.•058XIO3 .14776931X]0-3 5.8775591X10 10  1283.41 .14554624XID" 3

-. 947XI0 -. 12048667XI0-3 8.3670572X10 9  121.46 -. ll947337XlO" 3

.148XI0 -. 17659027XI0 3  8.3156874X10 7  2.59 0

-. 538X10"3 -. 13022000Xl0-2 1.2606770X107 21.37 -. 1237882X10-2

where s, is the limit of the iterative scheme.

This method is clearly inadequate for dealing with this example, since the
bias vector has been shrunken only a very small amount whereas a considerable
amount of shrinking is necessary in order that the estimated bias agree reason-
ably well with the biases calculated from the optics solution. The diffi-
culty arises from those least squares bias estimates which are far from their
true values. When the true values are replaced by these estimated values in
the Hoerl and Kennard method, the iteration converges to the wrong values
which are quite near to the least squares estimates. We have not been able to
find an automatic method for choosing ridge parameters which works well for any
of our examples.

5. APPLICATION OF PRINCIPAL COMPONENTS REGRESSION. In absence of a method
for choosing ridge parameters we have recently begun to work with principal com-
ponent regression as an alternative to the use of ridge regression for shrink-
ing the erroneous least squares solution. We have had a fair amount of success
with this method on several examples. In the principal components regression we
set = 0 for i= 2M-r, 2M where r is the smallest integer for which

2ME Yi-

i=2M-r I < 10"2 (30)
ZM

i=l '
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We are assuming in (30) that the eigenvalues, , have been ordered from

largest to smallest. The use of 102 as a cutoff for the eignvalues in (30)
is arbitrary, but we have found it to work well in several examples. For the
example application described above, the principal component estimator sets
0 5s = 06 0, corresponding to the tw.o smallest eignvalues, The results of

* the principal components estimator for this example is compared below with
optics, least squares, and ridge regression.

R122-R R1?2-R R195-R R12?-A RI 2- A RV95-A FR12Z-( R1~23.E RM5

33 3-3 3-
0p~ics 157.3 152.9 80.3 .O5X10" ,02X10- .O9XI0"3 .IX1D" -. G£x10"3  *.09X10

Ridge l1-.9•) 131.8 142.9 72.0 0 -. 6XI0 3  .09XI0" .12X0 3  -. OTX0 3  -. 07.X

Least squ:r•s 118.3 114.8 63.7 .116XI0 3  ,058XI0"3  148X10 3  -. 737X10" 3  -. 947XI0" -.

components 147.9 144.3 69.4 0 .. 1SXO33 .123X10"3 08SX1O"3 -067l "3
3

The principal component method has been criticized as being too restrict-
ive. Marquardt has suggested that a fractional rank procedure be used instead
of the principal components integral rank procedure. The fractional rank esti-
mator takes a linear combination of principal components estimators,

Of = CBr + (l-C)0r+1, 0 - c ! 1 (31)

where ar is the principal components estimator of rank r. The difficulty with

the fractional rank procedure is in the choice of the parameter, c. Marquardt
[4] suggests using a graphical method like a ridge trace where each component

of the vector af is plotted against the fractional rank, f = cr + (l-c)(r+l).

Another procedure, suggested by Hocking, Speed, and Lynn [5], for choosing c
is to minimize the mean square estimation error. This method is implemented
in a way similar to the iterative method of Hoerl and Kennard for choosing
the generalized ridge parameters and suffers the same difficulties in appli-
cation.

6. CONCLUSIONS. It has been demonstrated by simulation studies [6]
that ridge regression offers potentially a better estimator than the princi-
pal component technique, but that a better estimator of the ridge parameter
is necessary before that potential can be realized. I definitely believe
that this conclusion is correct for our trajectory estimation applications.
I also feel that a similar conclusion could be deiaonstrated for the fract-
ional rank procedure. We are unable to implement these potentially better
methods in a routine trajectory data reduction because we are presently
unable to develop a good estimator for the paraiceters in either method.
We are greatly in need of sanie fresh ideas for choosing the parameters in
these biased estimation methods.
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AN EIGHT VARIABLE COMPOSITE DESIGN FOR

FITTING A SECOND ORDER RESPONSE SURFACE

Carl B. Bates

US Army Concepts Analysis Agency

Bethesda, Maryland 20014

ABSTRACT. An electronic warfare study has been initiated at the

Concepts Analysis Agency. The study is to provide justification for

procurement and force structuring decisions concerning new electronic

warfare/signal intelligence (EW/SIGINT) systems. A communications

model, Communications Electronics Warfare Combat Simulation Model

(COMMEL 11.5), will be used to investigate the effectiveness of US EW/

SIGINT systems against enemy command, control, and communications (C3 )

systems. COMMEL 11.5 is estimated to require four hours' running time

to simulate an eight-hour battle. Eight model input variables having 6,

6, 4, 4, 4, 3, 2, and 2 levels, respectively, were selected for the in-

vestigation. The objective is to fit a second order response surface

using as small a number of computer runs as possible. A 1/4 x 23 frac-

tional factorial desin is augmented with the addition of axial points.

The resulting variation of a central composite design contains 80 design

points. The experimental design is presented and discussed.

1. INTRODUCTION. The Concepts Analysis Agency has been tasked to

analyze the relative contribution of US electroric wartdre systems to

the outcome of ground combat. A wide variety of new electronic wdrfare/

25



signal intelligence (EW/SIGINT) and weapon systems has been introduced

for the post-1980 timeframe. Recent assessments of US and Soviet com-

mand, control, and communications (C3 ) show the need for improving the

quantified analysis of EW assets to counter threat C3 . An analytical

basis is needed to provide justification for procurement and force

structuring decisions with respect to EW/SIGINT systems. The analysis

should provide detail sufficient to assess the potential of selected

electronic countermeasures (ECM), electronic warfare support measures

(ESM), and tactical SIGINT systems.

To accomplish the task, the Concepts Analysis Agency initiated the

Force Electronic Warfare/Tactical SIGINT (FEWTS) Study. The purpose of

the study is to analyze the relative contribution to combat potential of

the denial, destruction, and exploitation of threat C3 through the

application of US EW/tactical SIGINT means.

2. PROBLEM DESCRIPTION. An enhanced version of the Communications

Electronic Warfare Combat Simulation Model (COMIMEL 11.5) was selected

for use in the study. COMMLL 11.S is d fully computerized, dynamic,

two-sided, division level ground combat model. It will be used to in-

vestigate the effectiveness of US EWiSIGINT s.'stens dydinst enemy C3

systems. The model permits detailed observation of communication events

in a combat environment, and provides a tool for measuring, in terms of

combat outcome, the merit of selected EW/tactical SIUINT capabilities

against a threat.

26
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Eight model input variables were selected for the investigation.

The variables represent equipments and operating characteristics. The

number of levels selected for the eight variables ranged from two to

six. The eight variables and their levels are given in Table 1. The

full 62 x 43 x 3 x 22 design has over 27,00U variable level combinations.

Table 1. Design Variables

Variable Levels

Xi - TACJAM 0, 1, 2, 3, 6, 9

2 - TLQ 17/A 0, 1, 2, 3, 6, 9

x3 - QUICK FIX 0, 1, 3, 6

x4- TRLBLZR 0, 1, 2, 3

x5- CRIT NOUES 1, 2, 3, 4

x- JAM vs L/K 1, 2, 3

x7 - E/W EMPL CON 1, 2

x8 - ARTLY EMPL CON 1, 2

Nine tentative wieasures of effectiveness (MOE) were identified.

They consisted of Red dnd Blue m~ateriel and personnel losses and forward

edge of the battle area (FEBA) loss. All nine MOE -. ontinuous vari-

ables. The study neembers desired d second order resiLtise surface for

each of the nine MOE in terms of Lhe eight mode' input variables. The

second order model,



y 180 + $ 1 X1 + A2 x2 + J 3 X3 +J94 X4 +195 X5 +J86 x 6 +-7X 108'X8

+~j1 +P922X2 +)33x3 + P449X4 +05S5>. 2 6X

+j÷ 12XIX2 +0 13x1x3 +B 14 XIX4 + ..- +jl7 XX 7 ÷B18xiY8

+A23 x2 x3 +'>Z4x2x4 + "" +•92 7x2X7 + 28 x2x8

+ 6 7x6 x7 + 68x6 x8

+-8 7 8 x7 x8 ,

has 43 terms (8 linear, 6 quadratic, 28 cross-products, and the inter-

cept term). The eight independent variables (x's) represent the eight

COMMEL 11.5 model input variables and the dependent variable (y) denotes

a particular COMMEL 11.5 model output variable, MOE.

3. BACKGROUND. Box and Wilson (1951) introduced the concept of

composite designs; Box and Hunter (1957) introduced the concept of ro-

tatability; and Box and Draper (1959) developed criteria for selecting

response surface designs. Hill and Hunter (1965) and Mead and Pike

(1975) give reviews of the aevelopments of response surface methodology.

More readily available sources on response surface methodology can be

found in Cochran and Cox (1957), Davies (1960), Myers (1971), and Ander-

son and McLean (1974).

Composite designs are ftjll or fractional 21 factoriil dt!i0ns aug-

mented with additional points which penrit estimation of Lhe quadratic
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coefficients of a second order surface. The augmentation consists of Zk

plus one (or more) center points as illustrated in Table 2. Therefore,

the composite design consists of ( 2k + 2k + 1) design points.

Table 2. 2k + 1 Augmentation

X 1  x2 x3 ... xk

-(r 0 0 ... 0

+it 0 0 ... 0

0 -( 0 ... 0

0 +i 0 ... 0

0 0 _U ... 0

0 0 +0 ... 0

.................

0 0 0 ... -a

0 0 0 ...

0 0 0 ... 0

If k-3 and the 23 coded x-values are +1 and -1; t :e design matrix

for a central composite design is as shown in Table 3 and illustrated in

Figure 1.

29
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Table 3. Three Variable Central Composite Design Matrix

xi x2 x3

-1 -1 -1
-1 -1 1
-1 1 -1

-1 1 1 23 factorial1 -1 -1
1 -1 1
1 1 -1
1 1 1

-0t 0 0
+(j 0 0
0 - 0 0 2x3 axial points0 + 0
0 0 -"
0 0 +a
0 0 0 - center point

- Axial

Factorial

Figure 1. Central Composite Design
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The literature on central composite designs contains discussions on

the determination of a' to yield orthogonal designs. However, no infor-

mation was found applicable to the above described problem in which the

x-values are prescribed and fixed. The following section discusses the

attempts to develop the eight variable composite design.

4. CANDIDATE DESIGNS

a. Design A. A "Base Case" situation was defined early in the

study planning phase. The Base Case combination of the levels of the

eight variables is shown by the circled values in Table 4.

Table 4. Base Case

xI1 x2 x3 x4 x5 x6 x7 x8

0 0 0 0 1 1 ©D 01
1 1 1 © 2 ( 2 2

2 2 ® z 3 3

( 0 6 3 4

6 6

9 9
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First, a fractional factorial design was developed. The lowest and

the highest values of each of the eight variables were considered as the

"low" and "high" values of a 28 factorial. A resolution V 28-2 frac-

tional factorial design was developed using I = ABCEG - ABDFH = CDEFGH

as the defining contrast. This gave 64 design points. The resolution V

design permits fitting the 8 linear terms and the 28 cross-product

terms. Table 5 repeats the Base Case values given in Table 4 and illus-

trates the high and low values used in the fractional factorial. Aug-

mentation of the fractional factorial then consisted of using "inside"

values as the axial points. This gave the 16 design points shown in the

lower portion of Table 5. Note that for xl, x2 , x3, and x6 , Base Case

values were treated as center points, but x4 and x5 were balanced over

the two inside values, as were x7 and x8 . This gave a total of 80 de-

sign points. The composite design matrix A, however, was singular.

3L



Table 5. Design A

xi *x2 x3 x4 x5 x6 x7 xf3

0 0 0 0 1 1 (T (D
1 1 2 2
2 2 (3) 2 3 3
( ( 6 3 4
6 6
9 9

Fractional Factorial

Low 0 0 0 0 1 1 1 1

High 9 9 6 3 4 3 2 2

Augme,,t at ion

1 1 3 3 1 2 2 1 1
2 3 3 2 3 2 2 2
3 3 m 3 1 2 2 1 1
4 3 3 2 3 2 2 2
5 3 3 1 2 2 1 1
6 3 3 U 2 3 2 2 2
7 3 3 3 2 2 1 1
8 3 3 3 3 2 2 2
9 3 3 3 1 2 2 1 1

10 3 3 3 2 2 z 2
11 3 3 3 1 2 (1 1
12 3 3 3 2 3 U 2 2
13 3 3 1 2 2 1 1
14 3 3 2 3 2 2 2
15 3 (a 3 1 2 2 1 1
16 3 U3 3 2 3 2 2 2

33
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b. Design B. For the second attempt to develop a composite de-

sign, the same fractional factorial design was retained, but the 16 auy-

mentation points were changed. The inside values for all variables ex-

cept x6 were balanced over the 16 design points. Variable x6 was set at

its Base Case value (center point). The augmentation part of the design

is shown in the lower portion of Table 6. This composite design matrix

was also singular.

c. Design C. The third attempt involved the same fractional fac-

torial design, but the high and low values were changed. This time two

adjacent inside values were used as the high and low values. One of the

adjacent values was the Base Case value (center point). The high and

low values used are shown in the center portion of Table 7. For vari-

able x6 , which has only one inside value, one outside value (3) was

used.

For the augmentation portion of the composite design, outside val-

ues were used as the axial points for x, through x6 . The next two in-

side values (1 and 6) were used as another pair of axial points for

variables x, and x2 (points 13 and 14, and points 15 and 16). All other

variables were held fixed at their cenLer points. Varldbles x7 and x8

were not varied, dll lb points were held fixed aL their center points.

4
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Table 6. Design B

1  x2  x3  x4 x5  x6  x7  B.

0 0 0 0 1 1 (1 (D
1 1 1 T 0 T 2 2
2 2 (1) 2 3 3

() 6 3 4
6 6
9 9

Fractional Factorial

Low 0 0 0 0 1 1 1 1
High 9 9 6 3 4 3 2 2

Augmentation

1 2 1 1 2 2 1 1
2 3 3 2 3 2 2 2
3 2 1 1 2 2 1 1
6 3 3 2 3 2 2 2
5 1 2 J1 1 2 2 1 1
6 6 3 N3 2 3 2 2 2
7 2 1 1 2 1 1
8 3 6 3 3 2
9 1 2 1 1 2 1 1

10 6 3 3 2 2 2 2
11 2 1 1 1 2 1 I
12 3 6 3 ? 3 2 2
13 2 1 1 2 2 1 1
14 3 3 2 3 2 2 2
15 2 1 1 1 2 2 1 1
16 3 3 2 3 2
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Table 7. Design C

x2  :x3  x4  x5  x7

o o 0 u 1 1 (T! T
1 1 1 W © 0 2 2
2 2 Q 2 3 3
Q Q 6 3 4
6 6
9 9

Fractional Factorial

Low 2 2 1 1 2 2 1 1
High 3 3 3 2 3 3 2 2

Augmentat ion

I 3 3 1 2 2 1 1
z 3 3 1 2 2 1 1
3 3 3 1 2 2 1 1
4 3 3 1 2 2 1 1
5 3 3 1 2 2 1 1
6 3 3 1 z 2 1 1
7 3 3 3 0 2 2 1 1
8 3 3 3 M 2 2 1 1
9 3 3 3 1 2 1 1

10 3 3 3 1 $ 2 1 1
11 3 3 3 1 2 0 1 1
12 3 3 3 1 2 1 1
13 3 3 1 2 2 1 1
14 3 3 I 2 2 1 1
15 3 ( 3 1 2 2 1 1
16 1• 3 1 2 2 1 1
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Design matrix C was nonlsingular; its rank was 43. Consequently,

the full 43-term second order response surface model given above in the

second section can be fitted. To date, other nonsingular design mat-

rices have not been developed. Therefore, the design matrix C has not

been compared against other nonsingular design matricei. The determi-

nant of (C'C) was evaluated, however, and IC'CI = (3.94) x IU4U. Also,

the variances of the 43 regression coefficients were obtained and are

tablualted in Table 8. The variance of b0 is 125.2. The variances of

the regression coefficients of the 8 linear tenrs range from 1.9 to

16.4; the variances of the regression coefficients of the 6 squared

terms range from 0.002 to 0.456. The variances of the regression coef-

ficients of the cross-product terms range from 0.051 to 0.512.



Table 8. Variances of Regression Coefficients

Regression Regression Regression

Coefficient Variance Coefficient :ariance Coefficient Variance

b0  125.200 b12  0.194 b3 5  0.053

bI 5.172 b13 0.512 b3 6  0.057

b2 5.172 b1 4  0.212 b3 7  0.057

b3 1.900 b15 0.212 b3 8  0.057

b4  10.350 b16  0.215 b4b 0.218

b5  9.855 b17  0.220 b4 6  0.230 a

b6  16.400 b18  0.220 b4_ 0.234

b7  6.838 b2 3  0.051 b4 8  0.234-

b8  6.838 b24 0.220 b56  0.220

bl 0.002 b2 5  0.202 b5 7  0.225

b2 2  0.002 b26 0.215 b5 8  0.225

b33 0.008 b2 7  0.220 b07 0.239

b44 0.382 b28 0.?Z bob 0.239

b5b 0.173 b34 0.023 1/6 0.239

b6b 0.4!b)
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5. CONCLUSIONS. The procedure employed above can be applied to

develop second order response surface designs for situations in which

the variable levels are prescribed and fixed. However, a systematic

method for development of the composite design is needed. The designs

attempted suggest that inside variable values should be used in the fac-

tonrial or fiactional factorial portion of the composite design and that

the axial points should lie on or outside the k-dimensional cube of the

factorial.
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AN APPLICATION OF ORDER STATISTICS TO TIME-SEQUENCE LOGIC

William E. Baker and Malcolm S. Taylor
Probability and Statistics Branch

US Army Ballistic Retearch Laboratory
Aberdeen Proving ,;ri'-. ?'aryland

ABSTRACT. If X1 1 X2 , ... X are independent, identically-distributed

random variables, then Y Y2 £ " Y , where the Y 's are the Xis

rearranged in order of increasing magnitudes, are defined to be the
order statistics corresponding to the original random sample. Order
statistics have been applied to the solution of a problem involving the
determination of time windows for firing impulses in a fuzing system. A

Scomputer program has been written which provides the probability of a
warhead fuzing as a function of the parameters which characterize the
detonators. Conversely, given a required probability of fuzing, the
program will determine the necessary detonator characteristics. Although
motivated by this specific problem, the work is general in nature and
should have additional applications in the armament research and develop-
ment community.

1. INTRODUCTION. Let XI, X2, ... , Xn be independent, identically-

distributed random variables. Then Y Y2 Y , where the Y¥'s

are the X Is rearranged in order of increasing magnitudes, are defined
to be the order statistics corresponding to the original random sample.
Order statistics find immediate application in the design and evaluation
of logical structures which make decisions based on the relative values
assumed by a set of n random variables. One particularly interesting
application involves the determination of time windows for firing impulses
in a fuzing system. This is the problem which motivated the work on
which we are reporting. However, the work is general in nature and may
prove useful for other applications in the armament research and development
community.

2. STATEMENT OF THE PROBLEM. In the particular problem which we
addressed, a fuze contains N detonators, K of which must function within
a specific time span. Furthermore, the second detonator (which functions
at time ¥2 ) partitions the time span into two subintervals. The first

subinterval [Y 2 " 610 Y2J is examined tn determine if the first detonator

functioned within that time segment, and the second subinterval [Y2 , Y2

+ 62] is monitored to count the number of additional detonators activated

during that period of time, If, within the time interval [Y2 - 1' Y2 + 621'
K detonators have functioned, then the command to fire will be initiated;

4I1



otherwise, it will not. The times to function for the detonators are
random variables and, as such, can be characterized by a cumulative
distribution function F. Assuming that the time to function of each
detonator is identically distributed, then the problem consists of
expressing the probability of fuzing as a function of K, N, 61, 6V' and F.

3. SOLUTION. Let X. be the time to function of detonator i in

its operating environment. Then X1 , X2 , ... , XN are independent, identically-

distributed random variables; and we can define YI, Y2 ' "'" YN to be

the order statistics corresponding to the Xi's. For our problem, if

Y2 1 • 1' we are interested in the probability that YK -Y2 62; however,

if Y2  > 61, we need to determine the probability that YK+l "Y 2 •62,
assuming K + 1 < N. Therefore, we need to evaluate

Pr (warhead fuzing) Pr {Y2 " Y 6 Pr YK Y2 <1 Ki {Y- ~ 2  2 Y2  Y 1

+ Pr fY2 - Y1 > 6i) Pr {YKI" Y2 62 1Y 2 "YI>6 1 ) (I)

Applying the definition of conditional probability we obtain

Pr {warhead fuzing) = Pr {Y2 - < 61 Pr YK - Y2  62 and Y2 - 6YI 1 )

Pr (Y2 - Y 1 4 I

"+ Pr {Y2 " YI > 61) Pr -YK+I Y2  6 2 and Y 2 - Y1 > 6 1 (2)

Pr {Y¥2 " 1 > 61)

which upon simplifying yields

Pr (warhead fuzing= = Pr fYK -Y 2  62 and Y2 - Y 1 1

Sr{K+l Y 2 € 2 and Y 2 - Y1 >1 "()

Defining

Fra) fb f(x)dx, (4)
_UD

we ca•n proceed to evaluaite the first te~rm on the righit-haznd side of
lv,11ai ion 3. As .shown in Appendix A we can ob~tain 'hic joint probability
,dens ity runct ion of the I st, 7.nd, and Kt h orde r %t at i t ics,



NI JFY) F K- 3
"(IP Y2# ) " ("-3) I (N-K) f(yd) f(y 2) tF(YK) " PY 2 )]S

@ f (y11- F(Y,)] NA (S)

If we let u - YK - Y2 ° V -Y2 " yls and w - yl then we can rewrite Equation S,

NI K-3 :
f(u,v,w) ; (K-3)l(N-K)' f(w) f(v+w) (F(u+v+w) - F(v+w)]

(K-3)1(NN-K

f f(uv+w) (1 - F(u.v+w)] N', (6)

and the desired probability is

+ C 6 I 2

f a* fo f(u~vw) du dv dw (7)

which is equal to

N += fw) 1 f(v+w) f2 [F(u+v+w) F(v+w)] K-3
N -1 Cv f) (

• f(u+v~w) [1 - F(u+v+w)] du dv dw (8)

In an analogous manner we can obtain the joint probability density
function of the 1st, 2nd, and K+lst order statistics; and, letting
u = Y -+l " Y2. v 2 Y2 - Y1 and w = yl, we can obtain the necessary

probability for the second term on the right-hand side of Equation 3.
That probability is equal to

NI 2 K-2
O(J-2)(N-K-l) ' f f(w) f f(v.w) fo [F(u+v~w) F(v+w)]

f f(u+v+w) (I F(u+v+w)]N'K'I du dv dw. (9)

The probability of fuzing is then just the sum of Fquation 8 and Equa-
tion 9.

Appendix B contains a computer program which evaluates these inte-
grals. In its current form it assumes that the distribution of the
times to function of the detonators is normal; however, it can be easily
modified to change this distribution. The program requires as input N,
K, 61 6 2, and a (standard deviation of the assumed distribution).
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4. RESULTS. For the problem we addressed, the value for a was

specified to be 10.S seconds. Figure 1 presents the results of changing
6 and 6 for a fuzing system in which K is equal to N-i. In Figure 2 S

considered a fuze with eight detonators; and, keeping a equal to 10"
we varied K as well as 61 and 62. Of course, given any four of the

five input variables (a, K, N, 6V, and 6 ), we can obtain a specific
2A

probability of warhead fuzing by parametrically varying the remaining
variable.
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APPENDIX A. As shown in Reference I we can obtain the joint probability
density function for YI, Y2, and Y.. Let X1, X2 , .,., Xn be a random

sample from a population with density f(x) - F'(x); and let YI' Y28 ."" Y

be the corresponding order statistics. Then the probability density
function for the rth order statistic may be derived by considering the
following configuration:

r-1 L n-r

x! < X <x +A o n n

That is, Xi • x for r-l of the Xi, x < X. • x + Ax for one Xi, and

X. > x + Ax for the remaining n-r of the X.. The number of ways this
I I

combination of events can occur is

nl
(r-1)"l It '(n-r) !

and each such way has probability

[F(x))r-I EF(x+Ax) - F(x)]1 (1 - F(x+Ax)]n-r

Therefore, we have

Pr {x < Y - x + Ax) n1
r -(r-Il) 0n-01r-l n-r• 2

IF(x) r-1 [F(x+Ax) - F(x)] (1 - F(x+Ax)]n-r * O(Ax ) (Al)

where OCAx 2) means terms of order (Ax)2 and includes the probability
of realizations of x < ¥r 1 x + Ax in which more than one Xi is in

(x, x + Ax). Dividing both sides of Equation Al by Ax and then letting
Ax - 0, we obtain

f~() __n1___ r-l n~~lpx]-r.
fy (r-.)Tn-r)t [F(x)]- f(x)l-F(x)] -r(A2)

In a similar manner we can derive the joint probability density
function of Yr and Y
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r-l s-r-l n-s

+Ax +Ay

and through an analogous argument we obtain

f YriYs(XDY) = rl1)1(s-r-Il)(,_S) [F(X)]rf(X

rn-s

(F~y) -F(x)s-r-1 f(y) (1 - F(y)]ns (A3)

Finally, for the joint probability density function of Y r i'ss andY

r-I s-r-l t-s-1 n-t

[+A a+y ZI6

and

f Y(x.y,Z) =(r-l)!s-r-1)!(t-s-T)I(n-t)fIF~) W1 x

[F(y)-_p(x)) s-r-1 f(y) (F(z)-F(y)]t-- ftz (lFz) (4

For the case r=l, s=2, and t=k, we obtain

f(x,y,Z) Ck3ir kf Wx f (y)

[F(z)-F(y)] - f(z) fl-F (z)]nk (AS)
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APPENDIX B. We are presenting here the computer program which evaluates

the desired probability function. As noted in the program comments, we have

assumed that the times to function of the detonators are normally dis-I 2
tributed with mean zero and variance a . However, with just a few changes

to the subroutines, a different distribution may be assumed. To do

this, all cards containing "NORMAL" in columns 74 through 79 must be

replaced by others with the appropriate probability density function

or cumulative distribution function.
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f9sRUGOAM OTUN I INPUTOUTUTtTAPESl'4UT.TAPE68OUTPUT)

C
C
C THIS PROGRAM DETERMINES THE PROBASILITY THAT K OUT OF N

C DETONATORS vILL FUNCTION WITHIN & GIVEN TI"ESPAN. K MUST
C SE GREATER THAN ON EQUAL TO 3t AND K MUST 8E LESS THAN OR
C EQUAL TO No THE DISTRIBUTION OF TmEIR FUNCTION14G IS ASSUMED

C TO BE GAUSSIAN *ITq-A MEAN EGUAL TO 0.0 AND A STANDARD
C DEVIATION EQUAL TO SIGMA. THE SOLUTION IS DERIVED THROUGH

. C THE USE OF OROER STATISTICS AND IS OBTAINED by EVALUATING

C A TRIPLE INTEGRAL.
C
C IF THE NUMBER OF OEYONATORS iS GREATER TnAN THIRTY#
C THEN THE TOLERANCE LIMITS OF THE INTEGRALS MUST BE REDEFINED,
C THAT IS. THE VARIABLE 'ERRORt IN THE MAIN ROUTINE AND THE

C VARIABLES ITOLAoTOLY. IN SUBROUTINE $0DST' SHOULD BE ADJUSTED*

C WITH THE TOLERANCE LIMITS CURRENTLY IN THE PROGRAM,
C THE RESULTING PROSARILITIES ARE CORRECT rO TwO OECINAL PLACES.
C
C INPUT IS AS FOLLOWS .*.*

C N *.o..... .,,.,, NUMER OF DETQNATORS
C K ................ o NU~qER OF DETONATORS TO FUNCTION
C SIGMA ....... ,*.*** STANDARD OEVIATION OF 0ISTRIBUTION

C 0ELTI .... *........ TIMESPAN (FIRST TO SECOND OTONATORS)
C OELTZ .... **,,... TIMESPAN (SECOND TO LAST OETONTOS)

C
PEAL NFACToK2FACToK3FACTNKFACTNKIFACT

C
DIM4ENSION IERR461

C
COMMON /COMI/ N.KoSIGMADELT,0DELT2
CO""ON /COM2/ PIlw
COMMON /CON•/ INO

C
EXTERNAL 0DST

C
nATA IERR 13*(-0),O.Z*4-0)/

C
CALL SYSTEMC (34*IERR)
CALL SYSTEMC (IIS,IERR)
WdRITE (",.Z00)

C
C READ INPUT
C INITIALIZE VARIABLES

C
5 READ 15,100) NoK*%IGMA*0ELTI.OfLT2

IF K.LT.3 .OR. K.G¶..) GO To 15
IF 04 .4T. 30) 4AITE (69500) N
IF (OELTI *GT. I0,*SIGMA) 0ELTIaI0.eSIGmA
IF (DELT2 6GT, 1OSIGMA) OELT2*10.SIGmA

RES190.
$ES2s0.

PIs3.14IS926536
NNxN/5.6

5 0



C-C

C

PESImSQUANIC (AvBERRORtRUN.OIST)
If (N -E40. K) 60 TO 7

TRES22SQUANK (AvS.ERAOR9RUM.vflSTl

C

N(FACTul

K3F AC Tal
NKF AC TaI
NKIIFACTaI

Do 10 ISIONI ~ NAC TaNF ACT' I
IF (I *LE. IK-21) KZFACTa(ZFACTOI
IF (I *LE. (K-3)) (.2FACTsI(3FACT*I
IF (I *LE. (N-K)) NKFACT=NKFACTOI
IF (I *LE. (N-e(-1?l NKIFACTaNFCIFACTOI

t0 CONTINUE

C COMPUTE ANDO RITE PROBA.31LITIES

P)R0S1NFAC;T/(N4KFACT'K3FACT) .@(SI
OROS 2m.F ACT/ (l(F ACT OK 2FAC T! *ES2
OROB=PAOR1 .$D0O2
"wRITE (6.300) N.KSIG)4ADELT1 'OELT2,PPoW1 ,PPOS2.PRO(
GO TO S

IS uRITE (6*400) NvK
STOP

C
100 FORMAT (2IS50F20,7)
200 FORMtAT (1Im//)
300 FORMAT (IN #4"N a *12.3ZAtMI( 0 #t?.3X.8HSIGMA a *FIO.7.3x*

AN~DELTI a 9Fis.e#3A,8t4OELT2 a oF1S.0.3X/IM0.
*31MPROBABILITY 11 TrRqOL0, K FUNCTION) a *F1O.6fl14
*39HPRUdABILZTY i2 rh4OUGH 9.1 FUjNCTION) a vFS.6/1Pm
* ZHORO84Aq!L1TY (TOTAL) x 9FZ5.6/I////1

400 FORMAT (1,4 93SH00* INVALID VALUE OF N O)R K 000,X

""',N a *12.3X*4"K s @12)
500 VOR"AT (P1.4 0040* dAiRNINij - -N a 12.*

5 1N. CNECK T?@f TOLERANCE LIMIjTS OF THe I:.TERALS * e,,
END

C
c
C



FUNCTION DIST IV)

C THIS ROUTINE ?QOQEZOES THE INTEOPANO FOP THE TAIIRO INTEGRAL
C AS NELL AS THE LIMITS OF INTEGRIATION FOA T.HC SECONU INTEGRA6..
C

COMMON /COP4I/ NvKSI6MAsOELT1,OELT2
COMMON ICO"2** Pl~
Cop"ON /c0M41 IND

C
EXTERNAL FXXFXY

C
114:11
NN N/5 .6
IF IN .EQ* 50) N~nIZ
TOLxz10.0*(-NN)
TOLYS 10."N' (-NN)

I~U1i (QMTI.P1 SIGM CA-I. /C2SI~4 dA~) )NORMAL
C

IF (11.10 .EO. 2) GO TO S
0OQN150.
uPsOEL t
GO to 10

S DOON20ELTI
QP=Z.*OELTI
If (DELTI *LT* 1O.'SIGMA) jP31O.40SIGNA

C
10 CALL ORLINT (0OWN.UP.FXXFXYTOLA, TOLY.ANS.RUM,.RMYM)

OIST*PH14*ANS
RETURN
END

C
C

C

CC SUAROUTINE FXX tVqYIYa#Y3)

C THIS ROUTINE OPOVIDES TmE INTEG2ANO FOR THE SECOND INTE.GRAL
C AS NELL AS THE LIMITS OF INTEORATION FOR TH'E FIRST INTEGRAL.
C

COMMON /COMI/ NoR*SIGMA.OELTI.DELT2
COMMON /Coma/ Plow
PmIvwsI./(SQRT(2.4RI)*SIGMA2*EXPC-l.OtV-u)**Z/(Z.*S1GMAe*2)) NORMAL

-i '4IVum

C

52



FUNCTION4 PAY tVOU)

C
C

COMMO4N /COMI/ N*KtSIGMA90ELTI.OELTZ
COMMON ,'COMJ/ Pl.W

COMMON 4CO"61 IND

,MIUVWU1/(GA(.*SQRt2.SIGIGMACAP(I1*(U*V*0)?*iZOIGA 
*4ORmAL

CAPVýiEPNO ttV*W).IStGt4A) 
NRA

CAPUVWwFNO (IU*V-d)/SIOMA) 
NORMAL

IF IMNO EQ*. 2) GO TO 15

C
if IN *EQ, 3) GO TO 2
IF IN A10. K) GO TO 5

If (K .EQ. 3) GO -0 10
FXYXlCAOV-CAPVb)*(K-3)*PMIUVi*(1 

CAPUVW)**NK

0O TO 25
2 FAVRPHIUVW

GO TO 25
S FXYuhCAPUVW.CAPVW)*(K-

3 ) 'P'IUVW
00 TO 25

10 PXYs9m1UVw*Il.CAPUVW)*IN-K)
40 TO 25

C
15 CONTINUE

C
IF IN EQ0. (K-11) 00 TO 20

FAYs(CAPU U-C APYWl& (K-2 vaIU1*(.CAPIUJO)OtN-K

0O TO 2S
20 FXYS (CAPUVW-CAPVW) 40(K-a)'P041UVW

C
ZS OETURN

END
C
C
C

53



&CKNOWLDEGEMENTS. We would like to acknowledge Prof. H. A. David of

Iowa State Univ ersity for his personal correspondence directed toward the

evaluation of the joint distribution of order statistics; also, 141.

Denis Silvia of the Ballistic Research Laboratory for providing the problem

which prompted this work.

REFERENCES

* I D avid, H. A.; Order Statistics; John Wiley and Sons; New York; 1970.

2. Mood, A. M., Graybill, F. A., Boes, D. C.; Introduction to the Theory

of Statistics; McGraw-Hill, Inc.; New York; 1974.

L
54



-F
RADAR ERROR SIGNAL IMPROVEMENT

Robert E. Green
< •Programs Management Office

Instrumentation Directorate
US Army White Sands Missile Range

White Sands Missile Range, New Mexico

ABSTRACT. Monopulse tracking radars are subject to pointing errors
that are induced by target-caused signal fluctuations. These signal fluctu-
ations introduce non-Gaussian noise into the angle tracking servo error
signals of the radar. This paper raises the question of the efficacy of
making corrections for these errors based on other radar measurements that
are significantly corrupted by noise. Actual radar error signals are dis-
played along with the results of spectral analysis of the signals. The
spectral analysis confirms the presence of non-Gaussian components in the
error signals.

I. INTRODUCTION. One of the types of devices used at White Sands
Missile Range to keep track of missiles in flight is an instrumentation
radar. These devices transmit a burst of energy which is reflected off
the target and back to the radar. Automatic control devices in the radar
keep the antenna pointed at the target. The measurement of the time inter-
val from burst transmission to echo reception permits the determination of
target range; and the position of the antenna pedestal in azimuth and ele-
vation permit the designation of target position in polar coordinates. The
radars transmit these bursts of energy at rates of 160, 320, or 640 times
per second. The process of tracking a target automatically requires that
the device (radar) sense how far it is off from the target and make the
necessary corrections. The purpose of this paper is to define a problem
that has been detected in this error sensing circuitry and solicit sugges-
tions for improving radar system performance.

II. ERROR SIGNALS. Instrumentation radars of the type used at White
Sands Missil'eRange utilize a monopulse feed system to generate the error
signals that are used to direct the tracking mount in azimuth and elevation.
This monopulse feed system uses a quadrangle of four sensors (Figure 1) to
determine the necessary direction to drive the antenna so that the target
is centered in the quadrangle.

CA B

Figure 1. Sensor Quadrangle.
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lhe directional error is measured by observing the difference of the follow-
ing signal levels:

Azimuth error = (A + C) - (B + D) (1)

Elevation error = (A + B) - (C + D) (2)

These sums and differences are formed at the operating radio frequencies
(5.5 GHz) of the radar. This means that the individual signals from A, B,
C and D are not available for processing. In the radar equipment, these
quantities (1) and (2) are sensed as voltages instead of digital numbers.
These quantities are sensed each time the radar receives an echo. The sig-
nals differenced to form the quantities, (1) and (2) are of almost equal
magnitude. This results in a very weak, low frequency signal, embedded in
a large amount of noise. The radar equipment uses a very narrow band filt-
ering process to extract the signal from the noise. This filtering process
is accomplished in two stages. The data is first processed through a low pass
filter of approximately 10 Hz bandwidth. The filtered signal is then applied
to the servo which typically has a bandwidth of approximately 3 Hz. It is
not possible to significantly reduce the bandwidth of the 10 Hz filter and
maintain the stability of the servomechanism.

The noise in the error signals has two major contributing sources. One
of these is "thermal noise" and is naturally occuring in the environment.
It is assumed to have a Gaussian distribution with zero mean. The other
major noise source is contributed by the response of the radar system to
changes in the reflectivity pattern of the target. The reflectivity pattern
of the target is a very complex function that changes rapidly with changes
in target aspect. This means that signal amplitude can change drastically
between two successive echos from the same target. These rapid signal fluctu-
ations are the origin of the second major noise source.

Ill. AUTOMATIC GAIN CONTROL. The gain of the radar receiver performs
the same function as the volume control on a radio. As the signal gets weak-
er the volume or gain is increased to keep the output at a constant level.
In a radar system, an automatic control system is used to sense the average
received signal level and adjust the receiver gain accordingly. If the sig-
nal level does not change too rapidly, the automatic gain control system main-
tains the receiver gain at the correct level so that the radar system func-
tions normally. If the received signal level changes faster than the auto-
matic gain control can adjust, then the noise is introduced into the error
signals. This noise is deterministic in the sense that if the receiver gain
setting and the received signal level are known, then the incorrect value for
the error signal can be predicted, using a known deterministic function. The
previous paragraph indicated that the radar system is designed to respond
only to low frequencies. This would make it appear that high frequencies
would have no effect on the system. It should be noted that the radar is a
sampled data system and that frequencies near the sampling frequency will
appear to be low frequencies due to aliasing.
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"IV. ERROR GRADIENT CURVES. The error gradient curve is used to relate
the magnitude of the error to the voltage sensed (Figure 2). This function is
established as a part of the radar system set-up procedure. It is also used
in the tracking function to sense how far the target is off center. A common
set-up would be to assign a deviation of one milliradian a value of one volt.
Notice that the curve is linear in the region where the deviation does not ex-
ceed +1 milliradian. This is the region where the radar system would normally

* be expected to operate. In the radar set-up procedure, the deviations shown
* in Figure 2 are assigned for the voltages sensed in the azimuth and elevation

error signal detection circuitry. These values are correct, as long as the
receiver gain is set at the appropriate level for the received signal.

I i - '

T T

-----4 -A!

I L I I.. . .

Figure 2. Error gradient curve
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The automatic gain control system sets the receiver gain based on the
average value of the last few signals received. When a received signal has
a significantly different amplitude from this average, it has a profound
effect on the error sensing circuitry of the radar system. Figure 3 illus-
trates how the error gradient curve appears to the error-sensing circuitry
when the received signal is either significantly stronger or significantly
weaker than the average value over the last few samples. Curve A illustrates
how the error sensor reacts if the received signal is much stronger than ex-
pected. In this case, the voltage sensed for a given angular deviation is
much larqer than that shown in Figure 2. Curve B illustrates how the sensor
reacts if the received signal is much weaker than expected. For this condi-
tion, the voltage sensed for a given angular deviation is much smaller than
shown in Figure 2. Since Figure 2 was used to calibrate the system, these
conditions introduce errors in the sensed angular deviations. In actual ex-
perience this type of signal fluctuation occurs frequently in tracking targets
such as missiles and aircraft.

T

Figure 3. Mismatched error gradient curves.
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V. SPECTRAL ANALYSIS. The introduction of a large signal fluctuation
into the error sensing circuitry of the radar affects the system for a period
of time. This is due to the action of the filtering process. The introduc-
tion of an impulse into the system lasting only one sample period would at
first appear to be at too high of a frequency to affect the system. If the
amplitude of the impulse is very large its affect will be spread over several
samples by system filtering action resulting in antenna pointing errors.
Figure 4 shows the power spectral density of a radar error signal when the
radar was tracking a spinning missile. Note there is power at low frequencies
near the servo bandwidth of the instrument. Such non-Gaussian noise will
create incorrect responses in the radar angle tracking system. Figure 5 shows I
similar spectral analysis for a roll stable missile. Notice that the non-
Gaussian error signals occur much less frequently in this case. This indi-
cates that rapid changes in reflectivity pattern are much less common for non-
spinning missiles. Figure 6 is a recording of radar error signals where large
signal fluctuations were known to occur. The large angle errors resulting
from these signal variations are evident throughout the period shown. The
data presented indicate that the presence of large short-term signal fluctua-
tions do affect the radar angle error signals.

VI. THE PROBLEM OF CORRECTION. The composite of the Gaussian and determ-
inistic noise sources results in a function such as the one shown in Figure 6.
Observe that this data is so noisy that no trend can be discerned by inspec-
tion. The available measurements of received signal level are also very noisy.
In spite of this, it is possible to generate the required set of error gradient
curves. The necessary values can be generated by fixing the radar parameters
and then observing the data over a few hundred samples. The averages of these
samples have the expected characteristics. The i~idividual samples of received
signal level are so corrupted by noise that the correction of individual error
signal samples may not result in an improved value.

The information presented raises the following questions:

o Will applying corrections, based on functions derived from
average values, produce a better behaved sequence of error signals?

o Is spectral analysis an adequate method of measuring the
improvement resulting from the correction process?

0 How noisy must the measurement of signal level become in
order to make the correction process ineffective?
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USE OF THE BILINEAR Z-TRANSFORM
IN IMPLEMENTING DIGITAL FILTERS

Donald V. Rankin
Army Materiel Test and Evaluation Directorate

US Army White Sands Missile Range
White Sands Missile Range, NM 88002

ABSTRACT

The Laplace transform is an extremely versatile tool for solving differential
equations. The s-plane transfer function converts the problem in integration
to an algebraic one. But when a control system employs digital filters in an
embedded computer, the variables are necessarily discrete, and the problem is
better stated by means of a difference equation. The operator equivalence
relationships are

Z - 1 + A-eD

and show that the s-plane transfer functions will be quite complicated.

To circumvent this difficulty, we employ the Bilinear Z-transform which
has the form

1 F 1 +BZ- 1

A 1 + CZ"

and maps into what we shall call the r-plane, where the transfer functions are
well behaved. It is a most useful tool, admirably performing its mission of
simplifying calculations, but seems to be seldom used --- rarely correctly.

This paper re-examines the theory of the Bilinear Z-transform utilizing
two new parameters (essentially the reciprocals of those traditionally used).
It is felt that the method results in considerable simplification and clarifi-
cation.

I. BACKGROUND. During the test of a ballistic missile control system, an
analysis was performed of the digital filters used in the attitude compensa-
tion channels. The filters were implemented by cascading two, three or four 4
stages of the type

F (1Z1) )

This filter is implemented in a digital computer by the following two succes-
sive steps:

x" - xo (2)

F, = UX + OXo0 (3)
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Subscripts refer to ircrements of time; hence the sampling interval is given
by

tI - to at

is merely a convenient computational parameter.

In the actual case, only real coefficients were encountered. However, the
treatment which follows can be extended without much difficulty to inolude the
case of complex coefficients.

Several shortcomings were found. The proximate cause is easy to state ---

incorrectly computed coefficients and too many stages are examples. The ulti-
mate cause, however, cannot be determined with any certainty. Perhaps it is a
lack of understanding of the principles of digital filters on the part of both
design and test engineers.

The theory of digital filters is the theory of electrical networks. It is
not surprising, then, that the bulk of the literature on the subject has been
written by electrical engineers, and is couched in engineering terms. The
frequency domain is the vehicle of thought.

But when a linear control system is operated by an embedded digital
computer, the signal to be sampled often is virtually aperiodic in nature,
exhibiting a frequency spectrum that is quite primitive when compared with
that of even a common electrical phenomenon. Under these conditions, restat-
ing matters in the time domain results in worthwhile simplification and
clarification.

Accordingly, the theory is re-investigated, utilizing the terminology of
the time domain. Two variables are identified there, and expressed in units
of time (e.g., seconds or sampling intervals).

II. THE PROBLEM OF FREQUENCY FOLDING.* Nearly everyone has seen in the
movies the spoked wheel which, starting from rest, turns faster and faster
until a speed is reached (the Nyquist frequency) where the spokes appear to
slow down, eventually (at twice the Nyquist frequency) coming to an apparent
halt. As the actual wheel speed continues to increase, the spokes seem toturn backward, and the phenomenon is repeated in mirror image. In fact, it is

repeated indefinitely, like the images in a barber shop mirror. The frequen-
cies are said to be "folded," the folds occurring at odd multiples of the
Nyquist frequency.

The Nyquist frequency is equal to half the sampling frequency. Thus, if
the movie projector operates at 24 frames per second, the Nyquist frequency is
12 spokes per second. It is convenient for theoretical purposes to express
frequencies in radians per second, rather than in hertz. For a finite sam-
pling interval of At seconds, then, the radian sampling frequency is 2r/At
and the Nyquist frequency r/At.

*J. W. Tukey employed the term "aliasing."
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If the spectrum of a signal to be sampled contains frequencies (of suffi-
cient amplitude to be detected) greater than w/4t, frequency folding will
surely occur. Having occurred, it can neither be detected in nor removed from
the sample. Necessarily, steps to be taken are limited to preventive ones.
Three cases are discussed:

Case 1. It may be possible to decrease At, thereby increasing the
Nyquist frequency until it spans the troublesome frequencies.

Case 2. Unwanted frequencies can be removed by processing the signal with
a suitable band pass filter before eamlinR. This will result in a lose of
"power," which perhaps can be partially compensated for in the subsequent
digital filter.

Case 3. Analysis of the output of the plant (signal) may reveal that it
is aperiodic. The principal frequency thus is zero.

In all three cases, the function (signal) is said to be band limited,
since its frequency spectrum contains no frequencies outside the band defined
by the Nyquist frequency; i.e., -r/At ( w 4 u/At.

This paper will treat only band limited functions. However, this does
not mean that the specter of frequency folding can be ignored, since either a
poor filter design or a faulty feed-bank mechanism can induce periodicity.

III. THE BILINEAR TRANSFORMATION. In its most general form, the bilinear
transformation is given by

Awz + Bw + Cz + D - O (4)

where A, B, C and D are constants while w and z are variables, any of
which might be complex. Avoiding the trivial case A 0 0, division by A
obviously does not disturb the equality. Simplifying thus, let

C D B

A A A

Then

wz + yw cz + (5)

W + ywz"i a + (z6)j

It is equally easy to solve for either z or z-1 in terms of w. This
demonstrates that the inverse of a bilinear transformation also is a bilinear
transformation.
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The operators d3 Z -1 6 6, and Z" - ¶ - V submit to algebraic manipula-

tion, so that

0 (+( z-')x i[w- [ (1)

becomes a useful digital filter. The variable X is ANY parameter that can be

sampled in the computer.

As will be seen, the filter provides an approximate solution to the dif-

ferential equation

dx _ (x, t)dt •

since

Z - 1 + - exp

from which

d . £n Z - Z-1 En = - e (i -)
dt e e e

Expanding in ascending powers of V, then substituting 1 - Z-1 - V, the
infinite series in Z-1 can be approximated by a rational function in Z-1 .

The set of Pads approximants is a convenient source. If the degree of numera-
tor and denominator are chosen to be the same, the rational function can be

decomposed into factors, each of which has the form of filter w.

If the variable w is used to define an output/input ratio, then the filter

is of exactly the form encountered during the test.

IV. FILTER CONSTRAINTS. To be realizable, the filter (rational function)
must be bounded. That is, there must be no poles at infinity. Obviously, the

degree of the numerator must not exceed that of the denominator.

For a stable filter, under a conformal mapping into the r-plane (described
later), all poles must be found in the left half-plane. A sufficient condi-
tion seems to be that the real parts of all denominator coefficients be of
like sign.

66



V. DIFINITION OF TERMS.

t1  present time

t0  previous time

At tI - to the sampling interval.

Sometimes referred to as one Real Time Interrupt
(RTI). In the case at hand, At - 0.008192 se8.

* or *! the input at t 1  (f.' " igure 1.)

F or F1 the output of the filter at ti

F /0i momentary gain of the filter

G steady state gain of the filter

Lim FiG -

For this discussion, G - I, with no loss of generality.

It is profitable to investigate the response of the filter to unit step
function at ti; i.e.,

0 "o (n 0)

I" (n > 0)

where n admits only of integral values.

Lim F-I

We shall now define ], the total impulse of the filter, as

A (F G(,)

which, upon substitution, redu,'*a to

4 E (Fi .) (7)
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The partial impulse of the filter is defined as

n
4t E 1) (8)

When n is small, the ratio In/I is useful.

When I aI that time can be called the half-life of the filter.2
It is a measure of the filter's reaponsiveness (or sluggishness).

When 0 - 0, there is no net feedback. The filter is a smoothing filter
only (possibly a very good one). It is useless for control.

When I > 0, there is an excess of output over input, which is available
to the system for control. The amount of this excess defines "total impulse"
in a useful filter.

When I < 0, there is excessive "power" loss. The filter allows the
system to drift toward instability.

VI. OSCILLATING FILTERS. Repeating for convenience

X -X (2)

a, I- + ÷ 0 (3)

and continuing to investigate the response to unit step function, it is seen j
that

xo - 0

X0 1

X2" •

S 1 y + Y2 "3
X4

In the limit, there will be generated an infinite series which converges to

m. i-• 1 (9)
i -Y)B

Iwo I +
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provided I-YI < 1. When 0 < Y < 1, the series will have terms of alternating
sigu. The successive values of Xi will oscillate about some value, as
will the output of the filter. As a general rule, an oscillating filter is
not desirable for control. So much so that an oscillating filter can be
viewed as evidence of poor design.

When - I < Y < 0, the series for (1 + Y)-' will have terms of like
sign, and the filter will be relntively smooth.

Notice the behavior of x for various real values of 1.

Y • - 1. The successive values of X diverge. The filter is unstable.
1

- 1 < Y < 0. X converges to the value 1-+-y* The filter is stable and
relatively smooth.

- 0. X - 1 (constant). The output of the filter therefore is constant
(a ÷ •). An exception occurs at ti, where Fi

0 < Y < 1. X converges, but oscillates about the value The
filter oscillates with period 24t. This is equivalent to exactly the Nyquist
frequency. (See Figure 2.)

Y - i. X alternates between the two values 0 and 1. The filter

output oscillates between a and 8.

Y > 1. x and the filter output are both oscillatory and divergent.

For a filter to be both stable and non-oscillatory, the coefficent Y
must fall within the range

-1 < Y < 0

VII. THE FUNDAMENTAL IMPULSE FORMULA. Repeating for convenience

F IZ÷+ a

Let K ,/a. Then

F /I + c
PZ ) z- (1.2)

Clearing of fractions,

(1 + YZ-')F - a(1 + 'Z-')O

This difference equation can be written

F~ + YF~~ aIt + 'nFn n- n n-11
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Fi

S • ButBut- 1 (n> 0)

and

Lim

- |.

Hence

+ y - [a 1 *1 (10)

From the difference equation is derived

n n-1 n n-I
E p + ,aC + K

Since PO =0 0 , this can be written as

n-1 n-1 n-I n-I

0P + Y) E F- C (i + K) Z a F
I i 1 i n

But

"1 + ÷ y a (1 ÷ ,),

hence

n-i
(1 + Y) r (' - *i) " : n - '

1 1 ) n

Remembering that 4, 1 and letting n-,

( 1) - f-. • - 0(i)
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Making the substitution
14" .Y (1o) 1

I + K,

(Fi 1) . . . . . (12)
l 1 ~+ K: + "Y + y +

.For two caoaaded stages

F (+ KZ-1 )(1 + 2ZS-
1)

I a2 (I + yiZ-' yzZ- (13)

An exactly similar development yields

1 1+ 1 Y2+I

U- + - - -a- (14)
1 +i 1 4 Y2 1 1 K2

The subscripts on the right refer to filter stages.

It is apparent that the process can be extended to any number of stages
say J. Thus can be stated in general form (for j stages) the FUNDAMENTAL
IMPULSE FORMULA

I At (Fi -1)

- t I+ I 1 :--' + ... 2 + YI
1 1

I 4 •.+ **,*

1 *" 1 *2

1+ Y + )2 + Y + K1

1 K 2 9 ; (15)

Or, since I y a (I + K), (10)
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t II + C2

1 72 (+6

For a single stage, 1 Jt (+-) (Yi)

The constraints upon y imposed by the requirement for filter stability
ensure that the denominator is positive. Hence a > I is the necessary
condition for a useful =ot filter (Q > 0). It follows immediately that
1 + K also is positive and that y > ic.

For a given value of K, u/(1 + y) remains constant, but -1/(0 + y)
increases with increasing y. The function is maximized (for the allowable
"range) at y - 1. We choose the notation

Si~~max 2 •(•.I

For j stages,

|max • A (.1 + cU2 + .... + 0 - ')

1 - K
But if y 1, - I and

At 'l+ 1 K2 + (17).
Imx 2 1.~ + i T1+-K2  1+ 17

It is proper to think of Imax as a boundary condition. But |max
is clearly unattainable, since the boundary is not included in the (open)

region. It will be found that .max always is reduced by an amount which
shall be called the attenuation and which is defined by

A -I 8  - 1 (18)" max -I(s

The proper dimension is some unit of time; e.g., seconds or RTI's.

'sax can be called the "desired total impulse." It appears in tha
numerator of the r-plane transfer function, as will be seen later. Since it
is a function of only the Kj's, the latter can be called the "impulse
coefficients."
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VIII. THE ATTENUATION. A. Attenuation is defined by

A- Imax 1 (18)

Two forms of the Fundamental Impulse Formula can be combined by simple
addition to yield

I t1 ~1Cj K2  1 Y

1- Y2 +-Y4
1 (14)

Thus

- 2 y..(19)

If we define

A j 2 1* fj

then each A7 > 0, due to the limits imposed upon y. Further, since
I > 0 (for a control filter), A < Imax"

Therefore

Imax > A = Al + A2 + + A > 0

The attenuation can be computed separately for each stage and the parts added.

Notice that each Ai is a function of yj alone. It is there-
fore proper to call the Yj's "coefficients of attenuation."

For a single stage, let us observe the effect upon Aj of various
.values of y.

-1I < y <(0 implies Aj >2

y - 0 implies A " At

At
0 < Y < i implies A < _2
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The filter characteristics, previously stated in terms of Y, can now be

stated in terms of A. For 3 stages, then

0 < A < ijht filter oscillates
I~

A - jJAt filter finite of duration 3At

A ½aet < A < Im,• filter smooth

A - Imax zero total impulse

As A approaches Imax, the filter becomes more sluggish.

Particularly note that a requirement that the filter be non-oscillatory
places a finite limit upon the number of filter stages. This limit is, of
course

21
At

IX. COKPUTING THE COEFFICIENTS. For a single stage

A A ( Y or - at - 2A (19,02 1 + y At + 2A

[max " C - K at- 21orM (17.)"2 ( -+ o At + 2 1max

Now A is a function of frequency response and may be amenable to some
adjustment. Not so Imax" It is the "power" demanded of the filter, and
we expect to deliver only [ of it. Can we recover Imax completely?
The answer is yes. Instead of

A - [max" (18)

we write

A (Imax + A) - (I + A)

or

A (Imax + A) - Imax (20)
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We now find that

2 1 +•K'

At -2 - 2AK A: t + 21,,max =- A
max

"In other words, we enter I... + A into the formula for the impulse
coefficient and lot the filter attenuate it back to Imax" It is possible
to do this because, in the time domain, so many of the terms are additive.
Particularly note that A must be determined first.

Now Imax is a degimn reguregent imposed upon the filter. Arbitrar-
ily augmenting it by some amount (say A) alters nothing in principle. The
formulae can be stated

W. ." I'z + ,1" (22)SZ * Y

K " '/C" (23)

I' + :z / (24)

+ Y~ a 1' 1 + K)(25)

* where the primes denote the new values resulting from the augmentation of
Smax" Note that * and y are independent of Imax (as is A) and

* hence are not primed.

X. COMPUTING THE COEFFICIENTS FOR A TWO-STAGE FILTER. If Imax and A
are known, a single-stage filter is uniquely determined, since it contains, in
essence, only two coefficients (y and K').

Suppose the task is to design a two-stage filter. Other means must be
found for determining two of the four coefficients.

The first step is easy. For a non-oscillatory filter,

Imax > A > Ji~t
If we set y =M y "y 2, then A1 - A2 a ½At and it is ensured that neither

stage will be oscillatory.

""1+•2) (26)
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requires only that the sum within parentheses be oonatant. Solving for either
K' in terms of the other

K 4t 0 + K' 2(,ax UA)

" K '2At + 0 + K' 2)(s + A) (27)

Allowing K '2 to increase without bound

I n -(max A) (28)2 Ima + AAt

If I'I K' 2  K', then
At - (Imax ' A)

S At + Imax I+2P (29)

We thus establish limits for the S-.

P < c ' % I + 2P K '2

It is observed that as the K"s approach 1 + 2P, more and more "power" is
delivered at the first RTI. In some cases, the half-life can be less than
At/2, causing the filter to over-corre9t and generate unwanted noise. This
effect is most marked when the two K' s are equal. (At 1 + 2P, of course.)

Little case can be made for a half-life less than At. Using this as a
restriction, and noting that at the first RTI

€ L 1 L a2 (30)

it develops that

(- x• 2 1) Axt < ifmax (31)

Now

+ y-c (I +- K) 2At
at + A

allowing us to develop a second equation in the c"s. The solution, provided
it exceeds 1 + 2P, will furnish a practical lower limit for Kc'. To avoid
negative total impulse (for the stage), use an upper limit of K 2 e 1.

Often it is effective to set K ' 2  equal to unity. A useful side effect
is that one term drops out of the I... equation, since

I +AA~-tr-~ + Tmax2
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and thus the formula for Kc' is the same as the single-stage formula. The
filter is now implemented by

Ft  [ (1 + YZ-1)(1 + -Z-') 1(32)

Extending the method (I = c' 2 -~3 etc.) to filters of still more stages
may not be warranted. The additional stages will be smoothing stages only,
and the resulting filter can be very sluggish. In fact, the ratio i/
may actually take on negative values for the first few RTI s, a most
undesirable characteristic for a control filter. (See P'ipre 3.)
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In order to illustrate the effect of varying K'Z', three compensated

two-stage filters were synthesized to the requirements

'max a-25 at

and

A ~ 2

was arbitrarily set in turn to the values 1, 0, and --

Results are depi.cted graphically in Figures 4, 5 and 6.
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XI. TRANSFORKATIONS AND CONFORMAL MAPPINGS.' A useful tool developed to
simplify the solution of certain differential equations is the Laplace
Transform, defined by

L IF(x)] -a F(x) dx - f(s)

provided the integral exists. Therefore, the Laplace Transform is an integral

operator.

*In this paragraph, j /
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The complex variable a is of the form a a + jw, a and w being real.
The function f(s) is many-valued, being periodic in 4Jnwo0 , where n is any
integer and w0  is the Nyquist frequency (often expressed in radians per
second).

For band limited functions, it becomes expedient to define another

Scomplex variable

r + ju

by
-eat

r~t *tanh s~t (33)
2 2

The frequency response in both r- and a-planes is given by setting p - a S 0,
from which

-'At tanh "wa j a -4t
2 2 2

Thus -2 , tan--&--. It follows that for w0 the s-plane zero-strip
2 2

maps into the entire r-plane. As a result, the new variable r is single-
valued.

w is called the NATURAL frequency.

u is called the WARPED frequency. It is found to be related to the
attenuation by

S~2
A "(34)

It is very easy to demonstrate that the transformation r * tanh sAt is

2 2

bilinear in Z-1 and r, since Z = esat and tanh x ex -_e__ = I -ee"2
S•C2--- =e + e'x + •"2x-

whence
r tanh tu I e~sAt I - 1Z

2 2 T -••rZ-"• (35)

The inverse transformation is, of course

Z-1 2 (36)1+ Z.A!.
2

In the present case, the form of the filter is known, and is expressed in
powers of Z-1 . The r-plane transfer function is recoverable immediately
by direct substitution.
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For a single-stage filter, the desired difference equation is of the form

.- .(L 1 )(24)

Substituting for Z-1, it is found that

1, a 2 (r7)

2

Repeating for convenience

"2 1+ (19.1)-

': •4t .1 K ',•( 1
Imax + A -2 ( - K, ) (21)

+ -Y - Q'(1 + K') (25)

it is seen that the r-plane transfer function can be written

' 1- + r ([,ma, + A)
F 1 rA (38)

It should be clear that solution in either the r-plane or the Z-1 -plane
(which two are connected by the stated bilinear transformation) is easily
implemented in a digital computer, since only straightforward arithmetic is

involved. Not so in the s-plare, where logarithms (e.g., tanh 2Z-. ])

expone:tiale, and the like vwll be required.

For a filter of J stages, if y - - y - ... and K'2 V K' 3

K. - - 1, the r-plane transfer funcdion is

F' 1 +r( [max + A) (39)

(i + rA)j

BIBLIOGRAPHY

(1) Boole, G., THE CALCULUS OF FINITE DIFFERENCES; 5th Ed., Chelsea Publish-
ing Co., New York, 1970.

(2) Churchill, R. V., INTRODUCTION TO COMPLEX VARIABLES AND APPLICATIONS;
McGraw-Hill Book Co., New York, 1948.

(3) Hamming, R. W., NUMERICAL METHODS FOR SCIENTISTS AND ENGINEERS; McGraw-
Hill Book Co., New York, 1962.

(4) Kaiser, J. F., "Digital Filters" in SYSTEMS ANALYSIS BY DIGITAL COMPUTER;
John Wiley & Sons, New York, 1966.

(5) Lindorff, D. P., THEORY OF SAMPLED-DATA CONTROL SYSTEMS; John Wiley A
Sons, New York, 1965.

84

14



_7 Y_

IN.0kLJNCL PROCEDURES FOR DE'JI.I1A)i.NG LIFE 71ME ES'IlIATIS
OF ADVANCED MATERIALS

Donald Neal
Edward H. Lenoe

Donald Mason

Army Materials and Mechanics Research Center
Watertown, Massachusetts 02172

EXTENDED ABSTRACT

An improved procedure for treatment of so-called censored data has
been developed and life-time estimates made for proof tested ceramic rotor
hubs, in addition to development of quality assurance control of powder
metallurgically produced turbine engine discs. These represent situations
for structures to perform under extreme environmental conditions and
analytical procedures to aid in achieving required component capability.

Two and three parameter Lognormal and Weibull functions represent the
candidate statistic models. These functions are examined for best repre-
sentation of data in order to provide flexibility in the fitting process.
The functional parameters are obtained from the maximtm likelihood (M.L.)
method. This method provides a superior representation of the cyclic
fatigue data as compared to the more conventional procedures. The 1.L.
method can also provide the desired confidence limits for the parameter
and reliability determinations associated with the given data set. The
inadequacies associated with the method of moments, graphical procedures,
etc., in obtaining the functional parameters is recognized from the arbi-
trariness of the functional representation of the data. The acceptability
of these methods is acutely data dependent.

The need for considering all data including censored data is
established. Both lower and upper bound censored data are considered
as they relate to proof testing and run-outs respectively. An improved
probability of failure computation can be obtained when the total data
set is represented. Partial probability ranking procedures tend to
introduce substantial errors in the extrapolation process necessaty in
obtaining minimum life-time estimates. By including censored data, one
can provide a more complete understanding of the materials capabilities.

The results of combining the H.L. method with the inclusion of
censored data are compared with conventional procedures in obtaining both
structural reliability and material probability of failure computations.
The comparison indicates a substantial nonconservative estimate of failure
probabilities can occur if threshold stress values are obtained from proof
testing without consideration of the censored data. Application of the
M.L. procedure provided an improvement in the functional representation of
data.
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AAINALY;]S OF CL,,SuIIDATA

Introduction

Oftentimes in procurement of structural ceramic components, screening
tests are employed to attempt to verify component (part) quality. Typical

* of such tests are room temperature (cold) spin tests of rotor hubs. Usual
practice calls for delivery of successful spin tested parts and these are
then treated as if guaranteed strengths were existent. We desired to more

F= fully exploit the information gained during such screening tests. As an
example, during the conduct of screening experiments, failures were observed.
Ordinarily these failures, or the failure data is not reported. It is
obvious that the failure rate data provides useful information in planning
for component reliability levels and is necessary to establish a ration3l
quality assurance plan. Thus this study explores the use of censored
statistics to provide reliability estimates incorporating minimum screening
strength levels, and also the failure rates (standard deviations ind.)
associated with spin tests. The influence, for instance, of 5% versus 10O
failure rate during screening tests are documented. Monte Carlo techniques
are employed to establish desired screening test procedures.

Suppose, for instance, fast fracture probability of failure estimates
were made using conventional Weibull statistics. In this instance, the
screening level is treated as a lower bound. However, censored data
techniques allow taking into account the likely component failure rates,
based on the observed screening test data. The purpose of the following
calculation is to compare the degree of conservatism of the two reliability
estimates. CIt was observed that the censored data technique provides the
more conservative results.)

These comparisons provide confidence in using the screening test data
itself for the estimates of production reliability. The implication of
these results is that continued local mechanical strength determination
testing can be minimized and lot component sampling, coupled with spin
tests can be adopted to insure hardware reliability. Treated random sample
selection from lots can predict corresponding failure of total lot. It is,
therefore, important to consider failure below minimum load level.

In representing fatigue data were run-outs (non-fpiled specimens
tested at predetermined number of cycles) exists, it i! usually necessary
to apply graphical methods in determining prescribed probabilities and
their corresponding cycles to failure. The graphical approach requires
representation of only the failed results. The remaining data is included
only in representing the ranking of the data. This method is often sus-
ceptible to error because of the arbitrariness that exists in interpreting
an acceptable regression line for ranked data. Optimum coefficient methods,
for example, will introduce sizable variation in slopes such that a unique
threshold value for function becomes very difficult to determine. Since
the extrapolation of the regression line provides the necessary probability
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r4.
i,',ber it is therefore critic'al that the slupe of this line be properly

determined. If all data is considered including run-outs then a censored
data analysis procedure must be applied. The present analysis outlined
in this text applies this analysis including the appropriate M.L. pro-
cedures. The Weibull and Lognormal distribution were candidate functions
since they are usually the most acceptable representation of fatigue data.
A comparison between graphical results and that of the M.L. censored data
method indicate substantial differences. The graphical results showed
highly non-conservative estimates. In this instance the component materialwould have been rejected instead of accepted as indicated by the censored
data method.

Following is a general description of the analytical technique developed
in treating the problems.

Weibull Function

The Weibull function has been commonly used in failure prediction of
ceramic and high strength fatigued materials. It was determined from the
analysis of the rotor disc and helicopter component data that the best
representative function was also Weibull, therefore, the M.L. analysis of
censored data for this function will be developed in this paper. The Weibull
probability density function of the random variable X is

f(XIO a m) =t(X-Cu) /0 i] exp {-[(X-ou)/oo] (V)

where 0o, m>C and X>O u >0

y , 0 and m are the location, scale and shape parameters respectively.
TH log ofWe Weibull likelihood function for dual censoring can be
written as

LnL = LnN! - Lnrl + (N -r)(Im-mLnao) - Ln(N-No)

0 0 0

N N

+Cm-l) I Ln(X.- )/ -
I u [Ix -o 0/i=r+l i=r+l (2)Orn I e p -( ~-aU ,m /a 11 (N _N o)[(XN aOu )/0 01M

where
N = total number of data points including the censored values,
N = number of values prior to run-outs (fatigue data)

and 0

r = ntuber of data values less than the proof tested value

8i
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"The MAL. eqtuations are determined from the partial derivative of LnL
with respect to the three parameters set equal zero. That is,

aLnL 00

(3)
aLnL 0-pn0
am

€ 0
U

where

ZLnL N
au -M'N-r)/o *m +M (X.- U) 0D 3
0 P r.]1 U 0

"-mr(X r1 - 0)°Mexp[-Xr.x-1 U) Im/oom[om° {l-exp[-(Xr+ }U)m/ m)1)

al.nL N N(N-r)(- Ln o) + [ Ln(X.O) a [X aOi=r'1J r÷

* L n ( x i a V O 0 r ( r ~ -0 U ) L n rx , l - aU ) / ° o ] e x p f - [ ( X r + Il - au ) / O o I M ) /

[ao0 Mlexp[-(Xr+]- a U)

and

BLnL N M N
iBr+I (XC-U) + O m (xi- • " mr(Xr -ai~~r~l i=r+l + u

expf-(xr+1_OU) /io1/(oM{1-exp(-X m /

*Note: When N = N and r # 0 then lower censoring is applied as required
for ceramic disc analysis. If r = 0 and N ý N then upper censoring is
used in evaluating fatigue results for the helicopter component. The result-
ant equations above are for the case where N = N
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A\n iterative procedure has been developed for determining the M.L. paraw. t.tr's

ao °and ". Initial estimates are obtained from the moment method without
censoring. From these estimates each parameter is determined one at a time
in cyclic order in equation 3 until reasonable convergence is obtained. At
each step, the rule of false position is used to determine values which
satisfied the likelihood equation with prior estimates of the other parameters
remaining constant. Note, if a large percent (greater than 50) of censored
values exist, then it is necessary to gradually increase the amount of
censoring in order to obtain desired convergence. If a two parameter Weibull
function is desired then omit a in the computation process.

U

Lognormal Function

Although the Weibull extreme value function is commonly applied in
representing ceramic strength data, the lognormal function can provide
an option if the Weibull function is not acceptable. The lognormal
function has been inclufs in the evaluation procedure. The likelihood
function iu defined as:

f(Xrel, ., XN p,o,r)

N! N 0 No [Ln(Xi- )-•] 2

0Ng)r . I o -/2--; X 2a2 (4)
i=r+l i"• i=r~l

N-N N0
•f1 - F[Zo]) {F[Zr+l

where I is the location or threshold parameter and m, a are mean and
standard deviations respectively. N. r and N are defined in the Weibull
analysis. o

The function F is defined as:

z.

F . J 1 f(t)dt

where
zi [Ln(X i-•)u/

and f(Zi) (2-n)" exp (-Z2 /2)
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The complete development of the M.L, function for the log normal is
omitted since it is similar to that developed for the Weibull function.
A much more severe convergence problem exists in determination of Lognormal
parameters, particularly for SO. or more censoring. Therefore, it is
important to obtain reasonable initial estimates in addition to introducing
tsmall increments of censoring until the desired amount is obtained.

Quality Assurance of Rotor Discs

The failure prediction procedures described previously where applied
to data obtained from both spin and flexure tests of rotor discs. Tests
were made in order to establish quality assurance of the disc material prior
to manufacture into ceramic engine rotors. The spin test is applied initially
in order to guarantee a minimum strength level for the disk. This lower bound
(threshold strength) was obtained from spinning the disk at an angular velocity
of 60,000 rpm. The equivalent forth point flexure test results are 350 N/mm
at rim section (RI Figure 3) of disc, this stress value is obtained as shown
in Figure 4.
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Subsequent flexure tests were conducted on the surviving disks. The test
specimens are selected from locations outlined in Figure 3.

The Results of the Censored Data Analysis Procedures

Data is analyzed for flexure specimens obtained from ring I of disk
(see Figure 4) in order to be consistent with the threshold strength level
obtained from spin test at this same location. Since there was a limited
amount of data from available disks, it was necessary to generate additional
data in order to demonstrate the effects of the censoring process as related
to failure predictions of the material. The censored data relates to the
number of failed discs resulting from spin tests. The remaining data was
obtained from selecting randomly, values generated from the Weibull func-
tional representation of flexure results in ring 1.

Initially is was assumed that flexure data was obtained from 100 rings
without consideration or knowledge of the number of failed discs in spin test.
A plot of the ranked data (flexure strength) and the corresponding Weibull
functional representation is shown in Figure 5. The RlS error tabulation
determines thc best functional representation and is defined as:

N()NMS - Fx(Zi)) 2 /N]½

i=I .1 1

where
Si-.5 R2 i-.3 id R

R1 -- N' 2 N+.4' 3 N-l'

i = 1, 2, 3, . , N

and N a sample size
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F is the cumulative density function selected from the four candidate
functigns (normal, lognormal, Weibull and the radical function). See
Reference 4 for details regarding radical function. In Figure 5, the radical
function was the best fit with Weibull the next best representation. The
mean and standard deviation is also tabulated with their corresponding 90%
confidence intervals. In box the labelled Weibull parameters, the dispersion
scale (char. value) and threshold value a (origin) are displayed with 90%
confidence intervals. a intervals are not as precise estimates as those for
the other parameters.

Sa - L LW I NMI

* *-

represents Pe so-called design A - allowable. In this instance it is
368.35 N/9ri The radical parameters are also tabulated but will not be
describe15 n this text (see Reference 4). The box for non-parametric
solution provides for design A and B allowables when parametric repre-
sentation of the data is not acceptable. The optimal tabulation indicates
300 and 30 data points are necessary for the A and B allowables. Instances
where 99 data points are available, a 99% survivability point (smallest
stress value) has a 63% chance of being correct. The B allowable (90%
survivability) has at least a 95% guarantee of being correct. The design
A allowable determined from Weibull function will be of primary consideration
in evaluating the effects of censoring data as it relates to hypothetical
failure rates of the discs.
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The results from Figure 5 essentially describe the failure prediction
of the disc when with additional data (spin test) omitted. There can be a
serious problem existing if this spin test result is omitted since the
test only prescribes material strength guarantee for small regions of
the disc. Therefore, it is essential to recognize that both spin test and
flexure tests are material strength characterization tests. Figure 6
presents the results from a 10% failure rate, that is, assuming spin test
resulted in 10% of total naber of discs failed. In this case, the
A-allowable is 297.59 N/m , a sizeable reduction from tbe case were not
spin-test failure existed. Lognormal was the other candidate function but
did not provide the best representation of data. Figure 7 Phows the results
for 20% failure with a resultant A-allowable of 230.42 N/im . If a failure
rate of 30% existed then A-allowable would be 194.57 N/me as noted in
Figure 8. The data is not well represented in this case, but if no alternative
is available then these results will provide the necessary conservatism in
contrast to omission of the censored results. The effects of ignoring spin
test failures as they relate to censored disc data is obvious, therefore, it
is important to consider all test results; both flexure and spin tests. In
Figure 9, a plot of probability of survival versus RPM is shown. Note the
reduction in allowable RPM when spin test failures have been considered. For
example, if 30% failure rate existed, then 95% survivability of additional
discs would limit the maximum speed to 40,000 RPM.

*MIS"

"C . ........ 3. **

* - . SI•.- a. dl ,.*h*a 'U

*. .... :.*a F • I -i

S .. a. S*....n Sm,0l FA3~IU n 3 A 3 *

Figure 6

93

... i i ,! i



f

______________ *re� See *�SC*S e

Si. -_ _ I�U�L�LZ�i
C-

�m. *e�
*� -' � *** *� * I,. Cees

S - CR45* w.ee ..e w .me� a..,
US -

I *�. ______ ______ �-

eC�S CCI *e* *Cq

C� �.a. i.e ,C. ICC s's ca see
se,.- en ... 4* e .in. .. ,

S .�

* IS..
*CftCI

r. I e.�. *3.*

0 UCes a

UCns a

� 2� FAI4.L� RAI(

e. � C

- - .me

4

Figure 7

I
� __________ **.. U.. e', - - e

iT:
[-�LL�AUJhAL��

Iee�iw� S

191

1CR. -- m a S

* U * �

* IS. CM.IC..- - -

I eeo
S..- --

CUReS

SCe�., C

� FAILEM kit

I�Y�
em -

U
.alWU

Figure 8

94

5
q



EstI,,1u Ps vm Ovm• Casiti.'
-% rM 0401-- E - -

0o0s - . ", a

\ \ , SI

S - -1OL sln| vo

6.4'--

+ \,

' . \',. .

30 40 t0 o0 70 IO 00

Figure 9

Fatigue Data Evaluation (Helicopter Engine Component)

The low cycle fatigue data with upper censoring (run-outs) shown in
Table I was obtained by strain control mode of testing where total axial
strain range is the controlled parameter being held constant, The material
is a HIP Reni 95 powder metal used in helicopter engine components.
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Initially the ranked data tabulated in Table I was plotted on Weibull
probability paper (see Figure 10). A regression line was obtained from
an optimum condition coefficient results. The 95% confidence limits for
the line are shown in the figure. The 3.54 cycles designation describes
the 99% probability for a larger log cycle to failure. That is, there
is a one percent chance for the log-cycles to failure to be less than
3.54. The 95% confidence limit was determined in conjunction with the
99% greater cycles to failure in order to describe an A-allowable for
fatigue strength.
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Figure 10

In Figure 11, a plot of the ranked data with the corresponding
functional relation are shown. Functional parameters were obtained from
the censored data analysis described previously. The failure to represent
lognormal results was due to excessively large percent of censoring. This
could have been corrected if partial censoring was implemented. The two
parameter Weibull functions excellent representation discouraged the need
for this modification. The relatively small RPS values for the Weibull
function are consistent with results for the small residuals noted in the
graph (see Figure 11). The broken line representing the graphical method
results shows relatively poor representation of the data. This was not
noticeable from the graphical plot of data. Although this poor represen-
tation occurs in this instance, other sets of censored data were well
represented by the graphical procedure. The problem exists, in that the
graphical method is not consistent in providing a good representation.
The M.L. method applied to the censored case invariably results in a
desirable data representation. A tabulation of the A and B allowables are
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shown in the figure. Note the relatively large differences in the results
from the two methods. The consequence of this overly conservative estimate
from the graphical procedure can result in unnecessary rejection of a very
expensive engine component. Figure 12 shows the results from another set
of data where a considerable large amount of censoring exists. Note, the
"excellent representations of this data by the H.L. method.
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CONCLUSIONS

The analytical treatment of truncated data obtained from the ceramic
rotor has been discussed in some detail since the results have important
implications regarding use of proof testing and qualification data.
Furthermore, calculations of the type presented herein are of importance
for establishing meaningful production lot sampling procedures which rely
on limited quality assurance and spin test data. It was evident that
neglect of statistical information contained in the spin test failure
rate data, leads to non-conservative mathematical representations for
material behavior.

The previous discussion obviously -epresents one narrow facet of
analyzing failure of components.Thus far nothing has been said concerning
time dependent failure response of structural ceramics. It is worthwhile
commenting on studies directed towards the objective of understanding such
phenomena. While fairly extensive data is available to the designer which
permits materials choices for particular applications, it is worth noting
that many of the inherent mechanisms which produce microstructural and
physical and chemical changes are not fully understood. It is not possible
at this time to present a comprehensive mathematical model for all ceramics
which accurately accounts for all controlling materials phenomena, such as
the physical changes induced under severe environmental limits, as well as
creep, slow crack growth and other aspects of time dependent behavior.

An accurate determination of a prescribed probability for specific
minimum of cycles to failure of the Reni 95 material can be realized if
all data is censored, represented by the Weibull function where corresponding
parameters are described by M.L. methods. The uncertainty involved in the
graphical approach should be avoided. The argument that it is easier to use
is not valid at the present time. The simplest programmable calculator can
provide the necessary computation for the M.L. method. Although probabilistic
life estimates have been made for the previously mentioned material, the M.L.
method can also be applied to most other fatigue data.
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RISKS TO NEIGHBORING FACILITIES'

Paul C. Cox
2930 Huntington Drive

Las Cruces, New Mexico
(505) 522-1756

aBSTRACTs Many military installations, as well. as industrial
facilities, conduct operations which can present a safety hazard
to personnel, property, vehicles, industrial facilities, and
communities that lie in the neighborhood of the installation.
This report considers a military installation which tests missiles
and rockets, as an example, and discusses procedures for estimating
risks from these operations to neighboring facilities. The
Procedures of this report should also be applicable to many other
types of operations that are found on a variety of military
installations and with a number of industries. Estimates of
risk will be provided for certain critical points and also in
the form of contour maps, which will show the risks for the
entire region. Methods for obtaining confidence limits for
these risks will also be discussed. Finally, some suggestions
are offered regarding comparisons of risks from operations to
every day life; and from these comparlsons, it may be possible
to decide whether the risks from an operation are sufficiently
small to be accepted.

I. 1NTHODUCTIONs

a. Operations conducted by many military installations may
cause safety hazards to personnel, property, vehicles, ind-
ustrial facilities, and communities in the neighborhood of
the installation. These operations include the testing of
rockets, missiles, airborne targets, aircraft, explosive
devices, materiel emitting radiation, etc. It is t',e purpose
of this report to discuss a few methods for estimating the
risks created by military operations to neighboring
facilities.
b. Speclfically, consider a military installation with the

primary mission of testing rockets and missiles, and the
risks that may occur as a result of a malfunctioning round
flying off-course, Impacting in an undesired location, and
causing serious damage to an industrial facility located at
the unplanned Impact point. The methods of this report are
easily extendable to other types of military installations,
various types of industrial operations, and a variety of
possible targets.

*This is a condensation of the original report. A copy of
the complete report may be obtained by writing to the author
at the above addresse 99



c. The purpose of this study may be to consider the risks upon one

(or possibly two or three) specific target. This target may be

an industrial plant, a town, a highway, etc. On the other hand,

it may be desired to learn the risks at every point lying within

the region surrounding the military installation. If it is the

latter, the end product of the study may be a contour map of the

area, with contour lines indicating the probability that during

any 12 month period, a malfunctioning object may strike at a

point along the line and do damage greater than at some specified

level. The reasons for studying the risks for an entire

k neighborhood Includes (1) The entire region around this
installation may be covered with industrial plnnts, farms and

ranches, communities, hIghways, and other points of concern;

or (2) a company may want to locate a plant somewhere in the

region around the installation and will want to know whioh areas

are safe enough.

d. A primary working tool for this study is a set of maps. These
maps will cover the entire region of concern. They will be in
black and white, will show very little detail, but will show the
boundaries of the test facility, major highways, larger communities
and points of interest. These maps will also contain reference
points, which may be thought of as the points of intersection of
equally spaced vertical and horizontal lines. The closeness of
these reference points will depend upon the accuracies desired and
the amount of work that one wishes to do when evaluating the data.
Figure one is an example of such a map, with reference points
located 10 mi. x 10 mi. apart. Actual working maps should be two
to three times as long and wide as figure one.

e. The target that will be used as the example for this report
will be an industrial complex covering 100 acres = .1563 sq. mi.
It will be assumed that If an object tested under the project
under consideration impacts within this 100 acre complex, damage
at an unacceptable level has a 100% probability of occuring.
(Note references 2 and 3, or Appendix R of the original report,
for some techniques for the extent of damage to expect if an
impact occurs*) Finally, risks will be computed over a 12 month
period of time, It Is then believed that the risks obtained from
a study such as this can easily be extended to other types of
targets and for different periods of time.

2. Project Classifications

a. Record all test programs that are Presently assigned to the
installation as well as those expected to be assigned within the
next few years, Also, review some of the programs that were
previously assigned to the installation, because some of these
might provide information that can be useful in the evaluation
of present or future systems.

b. Determine which projects present no risk to targets of concern
and remove them from further study. These projects may involve
testing objects with insufficient range to reach the boundaries of
the test installation; the test objects may be of such material
that they will do no serious damage if they do impact in a critical
area; or the system may be so reliable that an unplanned impact
is virtually impossible.
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c. Collect the following information for all of the remaining
projeots a

S(i System design and performance characteristics.
(2) Expected reliability and accuracy of the system.
( Expected number of future tests.
( &Expert opinion on the reliability and performance

characterisitce of the system.
(5) Mass, shape, penetration capabilities, and other des-

tructive characteristics of the test object.
(6) If test data exists, collect the followings

(a) Total number of tests that have been conducted.
(b) Number of rounds that have malfunctioned, reulting in

unplanned impacts.
(c) The location of unplanned impacts.

d. Order the projects on the basis of the amount of test data
that is available. Analyze those pro jects with a good deal of
data first, because the results from these projects may be
useful when evaluating those projects with little or no test data.

3- Constructing a Footprint:

a. A footprint must be constructed for each project which can
provide a threat to any target under consideration. This foot-
print, when constructed, will be superimposed upon figure one,
as illustrated by figure 2. (See page 7). It should be pointed
out that some projects will require more than one footprint, one
for each test configuration.

b. The footprint that is being used to illutrate these procedures
consists of a set of concentric ellipses. The procedures used
to construct this footprint are discussed in detail in appendices
A, C, and D of the original report. Examples of other types of
footprints are discussed in Appendix B of the original report.
The footprint used in this study may be desireable if it can be
determined thatt

(1) The unplanned impacts appear to be distributed approximately
as the bivariate normal.

(2) The center of impact, the angle of rotation, and the
variances can all be estimated by one procedure or another.

c. It is assumed that in this illustrated example, there exists
a considerable amount of test data which can be used to estimate
the required parameters. The coordinates of the unplanned impacts
are listed in table I (Page 6). There will be many Instances in
which it will be necessary to estimate these parameters by methods
that do not depend upon test data.

d. The project used to illustrate these procedures will be
referred to as Project A. The following information will be
used to construct tnis footprint, in addition to the information
listed in paragraph le;
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(1) 240 relevant tests have been conducted under projeOt a. Of
this number, 18 rounds were unreliable and unplanned Impacts
resulted. Impact data for the 18 unplanned Impacts may be
found in columns 2 and 3 of table 1.

(2) It has been estimated that there will be about 32 tests each
year for several years to come. Thus, we can expect about
2.40 unplanned impacts per. year.

(3) Assume that for this type of test, a flight surveillance
system has a 90% capability of destroying or diverting
malfunctioning rounds so that no damnge will occur to a
target.

e. The x and y coordinates of the 18 data points (see col. 2 & 3
of table 1) must be transformed as follows before constructing
the footprints

(1) The (xy) coordinate' must be translated to provide an
(x',y') coordinate s•stem such that T' and y' equal zero.
The (x',y') coordinates are listed In columns 4 & 5 of
table I, and the values of x'.y' are listed in column 6.

(2) A rotation of axes, providing (x",y") coordinates, In
necessary so that rx-y" will equal zero. The rotation
formulas are: x" = xl-cos 0 + y'-s*nQ and

y" = -xlvsin 0 + y'*ocOs 0
Where 0 may be obtained as followss

tan2a = 2 x'.y'

rxo2 .2 y,2

The derivation of the above formulas may be found In
apDendIx C of the original report.
The (x",y") coordinates for the 18 unplanned impact points
may be found In columns 7 and 8 of table 1, page 6. The
values of x".y" are listed In column 8. It may be seen
from table I that TO a y" a ru.aN a 0, which is exactly
what the translation and rotalign was expected to
accomplish. Using (xty') data from tabie I, 0 - 37.70*

f. The footprint will now be constructed and superimposed upon
figure one, usinx the following procedures. Thi3 will be
illustrated by fipure two.

(1) The footprint will consist of 9 arbitrarily chosen,
concentric ellipses. These ellipses will be constructed
to contain 20%, 40%, 604, 80%9 90%, 95%, 99%, 99.5%, and
99.9% of the expected unplanned Impacts. If the number of
ellipses is increased, it should result in improving the
precision of the estimates of risk. It will, however,
increase the labor required to obtain the estimates.
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2

(2) The 9 ellIp8a0 will be or the forut . L 1,

a2  b 2

since r.,10 , 0. a M-U l b = k'sy-; 1 w V'•Z'1nti -k)

The formula for k Is developed from the XV distribution
w1th 2 degrees of frvedOes I.n apD41l.z D of the originala

SPr~pOZt.,

(3) Table 1, showing the tx,y)l (z',y'); asnd •Uy) ooordlnates
for the 18 unplanned Imoatt p.oints for Projett A. 1i shown
below.

• + 1). . (2) (4 + ) • • • (6) (T _ _ ( )

n % I i

-30 .4 -13 -14 1t2 -18.8 -3.1 38.3
-23 -1 -6 -11 be -11.5 -5.0 57.5
: 3 0 4 . 1 3 -6 7 8 - 2 £4 ,0 3 -2 ,,A £ , '

26 -2? -11 - 33 -10.5 L., • - 6.2

6 -22 5 -5 -5 25 -2.0 -C.9 6.3

7 -22 11 -5 1 -5 -3.3 3.5 -12.5

-x29 1 -6 6 .3 1 . -9.2
-1 -1 1 -0.2 0.3

10 .12 1 5 .9 .-5 -1.5 -10.2 15.3
X -13 8 -2 -8 :.9 .-. 0 -7.6

12 -15 1 8 16 6.5 5.1 33.2
13 -1 16 6 6 -6 8.4' 1.1 9.2

IA -to 21 ? 11 77 12.3 ,." 54.1
15 .6 13 1 3 33 0.5 '.3 -45.2

16 .6 19 11 9 99 14.2 0.4 5.7

17 -1 18 16 8 1:3 -3 .4 -59.8
18 1 0 21.. -1 22 21.l. -,.1 -2. 1

Sums -306 180 0 0 1107 0.1 0.1 0.7

Moons -17 10 0 0 0 0

3u2 of 1q. 1860 1250 2761.5 347.2

S t. Dew{ 10.4 8.6 12.7i5 14.519
o.7.77 0.0

TABLE 1
(ZY)lJ4't.V): and (z',yY) Coordinsktes of 18 UnplannedtImpact points. 18Uplne

(4) Plgure 2, shows the footprint for Project A,
superimposed upon the area map of figure one.
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4. Asnignrent of Probabilities to Reference Pointo.

a. Reference point 3-14 will be used as an example to Illustrate
how risks are assigned. Note that point 3-14 is located within
the band which Is bound by the .95 and .99 ellipses. (see the
footprint, fig. 2.)

b. Begin by computing the probability that over a period of 12
months, a test object from Project A will Impact within a target
as described in para. Ia, and do damage at an unacceptable level.
The computation will be for a target lying within the band bound
by the .95 and .99 ellipses, the band which contains the reference
point x-14. Therefore, the probabilities will apply to such a
target lying at or near point 8-14.

(1) The risk from a single test assigned to Project A Is as
follows$g

R a .1563 x 1.00 x 18/240 x .10 x .04/582.674
8.0474 x 10-8 wheres

(a) .1563 sq. ml. = 100 acres, which is the size of the
industrial complex under consideration.

(b) 1.00 Is the probability that damage at an unacceptable
level will occur if there is an impact within the
industrial complex. (note appendix E of the original
report for further discussion).

(c) 18/240 = .0750 comes from 18 unplanned impacts
(unreliable rounds) from a total of 240 tests.

(d) .10 is the estimate of the probability that the flight
surveillance system will fail to destroy or divert the
unreliable round In such a way as to avert an unacceptable
level of damage. Assume this was based upon 380 attempts
in which 38 were not successful.

(e) .04 is the probability of falling In the band that Is
bound by the .95 and .99 ellipses.

(M) 582.674 sq. mi. Is the area of this band.

(2) Since it is estimated that there will be 32 tests per. year
under Project A, the risk to the target from Project A, over
a 12 month period is as follows#

P(Risks for 32 tests) a 1 - (1 - R) 3 2. However, for small R,I
P= 32.R = 32(8.0474 x:108) = 2.5752 x 10-6

Also, for small R, this can be extended to any number of
years by multiplica~ton. For example, for 25 years,
P = 25(2°5752 x i0")0a 6.438 x 10-5.
Note that 2.5752 x 10-6 is the risk assigned to the band
bound by the .95 and .99 ellipses. Risks from Project A
to the other bands are computed by a similar method. (Note
the footprint on figure 2.)
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c. Finnlly, the risks will be computed for a target as described
-1-n para, le, located at point E-L4, from all projects located at
the Installation, and for a period of 12 months. ,

(1) The first step is to review all footprints from all projects
and observe which contain point 3-14.

"(2) Then, using the methods of pars. 4bdetermine
risks for point E-i4, from all relevant footprints* These
risks will be added together to give the overall risk from
the entire military installatioui. It was observed that
there were 10 footprints that covered the point 1-14#, and
the risks associqted with each Is listed below.

PROJECT RISK. PROJECT R ISx
A 2.58 x 1o6 - o..5,-1-6
B 1.32 x " G 2.11 x
C 032 x "H 1.05 2
D "00 1 O.OB x
a 1.18 x J 1.12z "

Sum, 132 z 19-
1.032 x 10

(3) From these results, It can be seen that the probability
is about one in 100,000 that during any 12 month period
an object from the Installation may Impact at the target
site, located near point (E,14), and do damage at an
unacceptable level.

5. Constructing the Reference Point and Contour Maps

a. By using the procedures of section 5, It Is possible to assign a
probability to every reference point on the map, and it is quite
possible that a map with the level of risk recorded at each reference
point is all that a user will want. Such a map is illustrated by
figure 3.

b. If a contour map Is desired, proceed as follows,

(1) Determine the probabilities desired to assign to each
contour line.

(2) Locate the adjacent reference points, with probabilities
just greater than and just less than that of the contour
lines being considered.

(3) By appropriate interpolation (probably logarithmic), determine
where the contour lines should lie between these ref. points.

(4) Connect these points by ruler and french curve and thus
construct the contour lines.

C. Figure 3 illustrates how the reference points can be labeled,
showing the risks of Imvact and serious damage at each of these
points. Then, using the reference points as a guide, a contour
map has been superimposed upon the map of the region. If the
labbled reference points appear to be most useful, it will be
unnecessary to construct the contour lines.
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6. Confidence Limits.

A great deal of additional study Is needed to develop
Improved procedures for determining confidence limits for risks
at desired points throughout the region surrounding the military
Installation. Pages 9, 11, and 12 of the original report discuss
how a modification of the procedures of "propagation of errors"
may be used to obtain estimates of the upper confidence limits
for the risks. References 4, 5, and 6 discuss the methods of
propavation of errors. It is hoped, however, thRt better methods
than vropagation of errors will someday be found.

7. How Safe Is Safe Snough?

a. When It is Indicated from a study that the risk at some point
is some figure (one In 100,000 for example), the user is likely
to ask several questions about this figure, includings

(1) What does this level of risk mean?
(2) Is this level safe enough?
(3) Why should we accept any risk?

b. The following suggestions may help In answering some of the
questions of the users.

(i) Risks from a military installation may be compared to
risks that occur in every day life. To make these
comparisons, such publications as "Accident FactsO
(see reference 12) may provide some useiul information.
For example, about one out of every 400U Americans will
die as a result of a motor vehicle accident within the
next 12 months, and one of every 100 Americans can expect
to receive a disabling injury from the same source.
Thus, if it can be shown that the operations from the
installation are very much less than the risks from the
daily use of the American automobile, this may be
convincing,

(2) Perhaps risks cn be reduced to economic terms. For
example, if a plant is worth 10 million dollars, and

the annual risk is one in 100,000. This would indicate
a risk of only $100 per. year. Thus, insurance may be
available to cover such a risk.

(3) Finally, when users are reluctant to accept any risk, it
should be pointed out that some risk is associated with
every activity carried on by the human race. Thus, it
Is necessary to find ways to reduce the risk of all
activities to an acceptable level.
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9. References:

1. Owen, D.B. 1nindbook of Stntistleil Tables 1962, Addison
Wesley Publishing Co., Inc. Reading, Mass. Notes

P. 184, a function for comnuting bivariate normal
probabilities. (this table Is especially useful
if rxy ý 0).

P. 170, Criticnl values of the Circular Normal Distribution.
(Thi3 table can be useful for computing circular or
elliptical fooLprints).

The next two reports can be useful in determining the capability of
targets to withotani impact from en object. Note Appendix S.

2. Kennedy, R.P. A Review of Procedures for the Analysis and Design
of Concrete Structures to Resist Misslle Tmrnct Effects.,
Nuclear Enwineerlnr and Design, vol.3?, 1976-, PF.-3-2Q3
North Holland Publishing Co.

3. Sturctural Analysis and Desirn of Nuclear Plant Facilities.
Prepared by the Editing Board and Task Groups of the Committee
of Structures n•rd Materials of the Structural Division of the
American Society of Civil Engineers, J.D. Stevenson, Chairman
of Editing, Board rand Task Group. Note especially the chapter
written by R.P. Kennedy.

The next three references can be useful in gettinF a background In
the theory of propaegaticn of errors.

4. Scarbrough, James B., Numerical Mqthematical analysis, 6th Edition,
1966, Johns Hopkins Press,-Bltimore-Md-, -

5. Ku, Harry Hp Notes on the Use of Propagation of Error Formulas,
1965, National Bureau of Standards Report no. 90i1.

6. Hahn, Gerald J. and Shapiro. Samuel S., StatisticAl Models in
Ergineerir�, 1967, John Wiley and Sons, New York (note P. 5-25)

The next report can be useful in obtaining daily risks to life and
health In many occupations and in just ordinary living. This
information may be useful in comparing with risks obtained from
special studies. Note section 8, p. 12, of this report

7. Accident Facts, published yearly by the National Safety Council,
425 N. Michigan Ave., Chicago, ill. 60611
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THE 1980 SAMUEL S. WILKS ME140lAL IDAL

Frank E. Grubbs

The Samuel S. Wilks Memorial Medal Award was initiated in

1964 by the US Army and the American Statistical Association,

and has been administered for the Army by the American Statistical

Association, a non-profit, educational and scientific society

founded 140 years ago in 11839. The Wilks Medal and Award is

given each year to a statistician - and a top-nc one! - and

is based primarily on his contributions to the Vancement of

scientific or technical knowledge in Army stat tics, ingenious

application of such knowledge, or successful L tivity in the

fostering of cooperative scientific matters which coincidentally

benefit the Army, the Department of Defense, the US Government,

and our country generally. The Award consists of a inedal, with

* profile of Professor Wilks and the name of the Award on one

side, the seal of the American Statistical Association and the

name of the recipient on the reverse side, and a citation and

honorarium related to the. magnitude of the Award funds, which

were generously donated by Phillip G. Rust of the Winnstead

Plantation, Thomasville, Georgia. Mr. Rust originally stimulated

the interest of Sam Wilks in distributional properties of the

"extreme spread" (bivariate range), a measure of the "accuracy"

of rifle shot on a target.

These annualAre Desig of Experiments Conference., at which

the Wilks Medal is awarded each year, are sponsored by the Army

Mathematics Steering Committee on behalf of the Office of the

Chief of Research, Development and Acquisition, Department of the

Army. i11



BIOGRAPHY OF THE RECIPIENT OF THE 1980 SAMUEL S. WILKS MEMORIAL MEDAL

by

Churchill Eisenhart

The 1980 Samuel S. Wilks Memorial Medalist is an internationally recognized
authority on statistics whose leadership has contributed greatly to the adoption,
acceptance, and effective use of statistical thinking and statistical methods In
many areas of research and human affairs, in both the governmental and private
sectors.

He was born in Philadelphia, Pennsylvania, on November 5, 1912. When three
years old, his family moved to the West Coast and lived successively in Berkeley,
Fresno, and Los Angeles, California, and Portland, Oregon, while his father,
primarily a physical anthropologist trained at Oxford under a Rhodes Scholarship,
with Ph.D. in Philosophy from the University of Pennsylvania, taught at the
University of California at Fresno State College, served with the California
Commission on Emmigration and Housing, and taught at Reed College.

At the age of 9, he had a newspaper route in Portland and wcn a Thanksgiving
turkey for an unusually large increase in circulation. Recalling this at the
time (1962) of his appointment as President of the University of Rochester, he
said: "I remember this partly because it was my first lession in pitfalls
of statistical measurement. The base set for measuring the growth of my route
was the month of August, and it was no feat at all to triple circulatlon when
the Reed College faculty returned from their vacations and especially when
hundreds of students arrived at the college. Most of all, I remember that turkey
because my father and I received it--alive--in downtown Portland and took it
home by streetcar."

The family moved to Minneapolis, Minnesota in 1923 when his father joined
the faculty of the Department of Anthropology at the University of Minnesota.
As a boy In Minneapolis, our Wilks Medalist became an ardent stamp collector,
tennis player and photographer. He organized a small stamp company, selling
stamps partly by mail but mostly to boys in the neighborhood. One of his best
customers was Richard M. Scammon, who was later to become Director (1961-1965)
of the U. S. Bureau of the Census and to serve with our Medalist on the
President's Commission on Federal Statistics.

Our 1980 Wilks Medalist entered the University of Minnesota in the fall
of 1928; majored in psychology with a minor in sociology, took nearly as much
work in mathematics and in philosophy, and gained valuable writing experience
as an editorial writer for the college paper, the Minnesota Daily, then known
as "the world's largest college daily". His high sciholarship led to his
election to Phi Beta Kappa, and to receipt of his A.B. degree magna cum laude
in 1932 at the age of 19. A paper on "The Influence of Color on Apparent
Size" which he wrote during his junior year was published in the Journal of
General Psychology, Vol. 13 (1935) and has been reprinted in books of re'aings
Tn- ps-ycol ogy.
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Shortly before graduation he decided on a career in economics, with
emphasis on mathematical economics and statistics. He remained at the
University of Minnesota for the academic year 1932-1933 to continue his study
of mathematics and to study economics and then moved on to the University
of Chicago, where he held a University Fellowship in the Department of Economics
from 1933 to 1935. It was at Chicago that he began life-long friendships
with Milton Friedman and George J. Stigler (father of the present Theory and
Methods Editor of the Journal of the American Statistical Association). They
(and two other fellow students) selected, arranged, and saw through to
publication, the first book of Professor Frank H. Knight's essays, The Ethics
of Competition (Harper & Brothers, 1935)--an early instance of our Medalist's
drive to see worthwhile material formally published in the open literature.

He spent the academic year 1935-1936 as Granville W. Garth Fellow in
Political Economy at Columbia University, where he studied with, among others,
Wesley C. Mitchell, one of the most eminent of American economists, doyen of
American business cycle analysts, the 1918 President of the American Statistical
Association, co-founder (1920) and director of research of the National Bureau
of Economic Research (an independent non-profit organization), etc., and
especially with Harold Hotelling, a pioneer in mathematical economics,
econometrics, and multivariate statistical analysis, and the person in the
United States then most versed in R. A. Fisher's theory of small samples and
statistical inference. Furthermore, this was the year in which Hotelling
revealed the potential of systematic treatment of functions of the relative
ranks of sample observations as a basis for what are now termed "distribution-
free" or "non-parametric" methods of statistical inference, through his Joint
paper with Margaret Richards Pabst, "Rank correlation and tests of significance
involving no assumption of normality". Presented at the New York meeting of
the American Mathematical Society on October 26, 1935, and published in the
March 1936 issue of the Annals of Mathematical Statistics (Vol. 7, 29-43),
this paper marked "the true beginning" of research on such methods as "an
important special field of statistics" (I. Richard Savage, JASA, Vol. 58,
p. 844, December 1953). Hotelling himself, his teaching, an?¶is research
exerted a far reaching influence on our 1980 Wilks Medalist's career in
statistics as will become evident as we proceed. For the moment we may
note simply that our Medalist's first statistical paper, "The Poisson Distribution
and th'_ Supreme Court", published in the June 1936 issue of JASA (Vol. 31, 376-380)
was written as a course paper for Hotelling.

During the summer of 1935 and the academic year 1936-37, our 1980 Wilks
Medalist was an economist for the National Resources Committee, a New Deal
agency in Washington, D.C. Milton Friedman was there also, and while there,
wrote his paper, "The use of ranks to avoid the assumption of normality
implicit in the analysis of variance" (JASA 32, 675-701, December 1937) in
which he thanks our Medalist for bringi;ng-to his attention a more informative
method of handling tied ranks. While serving with this Committee, our Medalist
co-authored a book on estimates of consumer expenditures in the United States
for 1935-1936, and worked on an article on the temporal stability of consumption
that saw publication in 1942.
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His first teaching appointment was as Instructor in Political Economy at
Yale University in 1937-38. "The high-point of that year," he has said, "was
getting to know Irving Fisher who was especially hospitable because of my
interest in mathematical economics, a field in which he had pioneered forty
years earlier."

In the fall of 1938 our Wilks Medalist joined the Department of Economics
at Stanford University, an association that continued, with extensive interruptions,
until 1946. At Stanford he taught courses in economic theory, mathematical
economics, and advanced statistics. His first contribution to statistical
methodology, "The correlation ratio for ranked data", published in the September
1939 issue of JASA (Vol. 34, 533-538), grew out of consulting he did with a
psychologist dur-i:ntg his first year at Stanford, and anticipated, or perhaps we
should say paralleled, independent work by M. G. Kendall and B. Babington Smith,
published in the September 1938 issue of the Annals of Mathematical Statistics
(Vol. 10, No. 3, 275-287--our Medalist's "rank correlation ratio", nr, Is exactly

their "coefficient of concordance", W. A dozen years later, at the University
of Chicago, he returned to consideration of methods of analysis of ranked data
as means of avoiding the implications of the normality assumption underlying
many common statistical tests, and with William H. Kruskal prepared a compre-
hensive treatment of the "Use of ranks in one-criterion variance analysis",
published in the December 1952 issue of JASA (Vol. 47, 583-621), in which they
introduced their now widely used H test , tus designated in honor of Hotelling.

During 1939-40 and the last half of 1941, our 1980 Wilks Medalist was a
Carnegie Research Associate at the National Bureau of Economic Research (NBER)
in New York City, on leave of absence from Stanford; and took advantage of the
proximity of Columbia University to attend the lectures there of Abraham Wald,
newly arrived (1939) from Austria. At the NBER he was closely associated with
Arthur F. Burns (later Chairman, President's Council of Economic Advisors;
Chairman, Board of Governors of the Federal Reserve System, etc.), Wesley C.
Mitchell (mentioned above), Frederick C. Mills (1934 President of the ASA;
and author of a statistical methods text, the second edition of which in 1938
incorporated many of the new ideas and methods of R. A. Fisher and was used
widely by students in economics, business and other fields), and Geoffrey H.
Moore (who later became the 1968 President of the American Statistical
Association and Commissioner 1969-1973, of Labor Statistics, U. S. Department
of Labor.) Analysis and interpretation of economic time series occupied center
stage at the NBER. With Moore he published A Test of Significance for Time
Series and Other Ordered Observations (National Bureau of Economic Research
Technical Paper 1, September 1941, 59 pp) in which they developed a test for
randomness, relative to either a monotonic or oscillatory trend, based on
the distribution of length of runs up and down; and two articles (with Moore)
in JASA, "A significance test for time series" (Vol. 36, 401-409, September 1941),
and-"ITme series significance tests based on signs of differences" (Vol. 38,
1953-1964, June 1943). The first provided a brief summary of the Technical
Paper, with examples of the application of the test developed therein; the
second, an alternative but not independent test based on the total number of
runs up and down. These two tests are today standard tools of nonparametric
statistics.
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At NBER, he also carried out much of the research embodied in his paper
"Compounding probabilities from independent significant tests", published In
the July-Oct. 1942 issue of Econometrica (Vol. 10, Nos. 3&4, 229-248), In which
he gave a clear mathematical exposition-of the basis of R. A. Fisher's procedure
for combining "significance probabilities" yielded by independent statistical
tests having continuous probability distributions (Fisher, Statistical Methods
for Research Workers, Fourth Edition (1932), Sec. 21.1)--the basis of which was
a mystery to many individuals and incorrectly explained by others--and provided
the requisite mathematical extension to cases in which at least one of the
"significance probabilities" is obtained from a statistical test having a discrete
probability distribution such as, for example, a rank or run test. At that time,
too, he was co-author with Milton Friedman of a paper on the empirical derivation
of indifference functions which saw publication in 1942.

Our 1980 Wilks Medalist returned to Stanford University for the first half
of 1942. The United States was then at war with both Germany and Japan, so
rationing and price control were matters of paramount concern. Our Medalist
responded by writing a paper, "How to ration consumers' goods and control their
prices", published in the American Economic Review later that year. Then,
on April 17, 1942 our 1980 Wllks Medalist wrote to W. Edwards Deming (then
Head Mathematician, Mathematical Advisor, U.S. Bureau of the Census) stating
that he and several of the others teaching statistics in various departments
of Stanford considered it "probable that a good many students with research
training might by training in statistics become more useful than In their present
work, or might increase their usefulness within their present fields" and asked
for Deming's advice on the development of "a curriculum adapted to the immediate
statistical requirements of the war". Deming responded by April 24, 1942, on the
letterhead of the Chief of Ordnance, War Department, suggesting a concentrated
effort--a "short" course followed by a "long" course on Shewhart methods of
quality control, the short to be "for executive and industrial people who want
to find out some of the main principles and advantages of a statistical program
in industry"; the long course for "people who actually intend to use statistical
methods on the Job; "both courses (to] be thrown open to engineers, inspectors,
and industrial people with or without mathematical or statistical training".
(Portions of both letters are reproduced on pages 320-321 of the June 1980
issue of JASA.) In one of the paragraphs not reproduced, Deming points out
the relevance of Wallis and Moore's work to statistical quality control, adding:
"The theory of runs and patterns is destined to receive a great deal of attention
from now on, and it is a pleasure to see the superb effort that you and Mr. Moore
have put forth."

The impact of Deming's suggestions was such that by May 1st, Holbrook
Working (Statistician and Economist at the Stanford Food Research Institute,
and Chairman of the University Committee on Statistics) had arranged a general
meeting of everyone in statistics; a first letter about the course went out on
May 21 to firms In the Western states that were supplying Army ordnance; and in
July 1942 the first course was given at Stanford, by Working and Eugene L. Grant
of the Engineering School.) Our Medalist had been scheduled to teach this course
(with Grant), and had been "beginning to wonder how to learn what [he] was supposed
to teach", when he was asked "to head up an economic research unit in the Office
of Price Administration" in Washington. So he dropped out and was replaced by
Working. The course was such a success that early in 1943 Working was chosen
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to head the now famous major national program that put on intensive 8-day
courses in statistical quality control throughout the country, under the auspices
of the Office of Production Research and nevelopment of the United States Office of
Education. By March 1945 these had been attended by more than 1900 persons
from 678 Industrial concerns in the United States and 13 in Canada. Many
of the "students" in the earlier of these courses went out to serve as
"instructors" in part-time courses that brought the message to an additional
3,100 persons in American and Canadian industry. This program had an enormously
beneficial effect on the quality and volume of American and Canadian war
production; and "prepared the soil" for the establishment of the American
Society for Quality Control, in February 1946. That our 1980 Wilks Medalist
played a role in initiating, and came so close to participating in this very
effective venture was a secret well kept from many of us until we saw mentionof It In the June 1980 issue of JASA.

Our 1980 Wilks Medalist never made it to the OPA position in Washington.
Before his appointment to that position became official, he received a telegram
from Warren Weaver, Director (Natural Sciences) of the Rockefeller Foundation
(1932-1955) then up to his ears In support of the war effort as Chairman (1940-42)
of Section D-2 of the National Defense Research Committee (NDRC) of the Office
of Scientific Research and Development (OSRD). Weaver, whom our Medalist has
described as "one of the most remarkable, admirable, brilliant, sagacious and
civilized human beings on the American scene in the past half-century" had
perceived an urgent need for a concentrated effort focused on resolution of
the various mathematical and statistical problems that were arising in the several
armed services and suppliers of their material, and especially those problems
that were arising more or less simultaneously in different places with, as he
put it, "the same verbs but different nouns"; and was engaged in setting up
several mathematical and statistical groups to do the "spade work" of the soon
to be established Applied Mathematics Panel of the NDRC, of which he was to be the
Chief (1943-46), and Thornton C. Fry (of the Bell Telephone Laboratories), the
Deputy Chief. Wilks had suggested to Weaver the establishment of a statistical
group at Columbia with Hotelling as Principal Investigator, and Hotelling had
brought our 1980 Wilks Medalist to Weaver's attention. Thus It came to pass
that on July 1, 1942 our Medalist assumed his first administrative post, Director
of Research of the Statistical Research Group (SRG) at Columbia University in
New York City.

SRG got off to a start with just three experienced researchers or "principals"
as he terms them in his article "The Statistical Research Group, 1942-45" in
June 1980 issue of JASA (Vol. 75, 320-330): Hotelling, our Medalist, and Jacob
Wolfowitz, another fo-Fmer student of Hotelling. Before its dissolution on
September 30, 1945 the number of "principals" had risen to 17--or to 18, If
Frederick Mosteller is included, who though actually on the payroll of another
group, worked closely and extensively with this SRG for essentially one full
year and co-authored two of its books and co-edited one of these. (The names
of all 18, with their respective lengths of service with SRG, are listed on
page 324 of our Medalist's aformentioned article.) These "principals" were
supported at one time or another by about 60 others: typists, secretaries,
a switchboard operator, an administrative assistant, a librarian, a messenger,
and about 30 young women, mostly mathematics graduates of Hunter or Vassar, who
did the necessary computing under the direction of Albert Bowker. The "principals"
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worked on problems of tactics, equipment, and operations for the Army, Navy,
the Air Force (which was a branch of the Army in World War II), and other units
of OSRD. Many of these activities stemmed from AMP studies assigned to SRG,
but a large number stemmed from consultation with and informal assistance to
Army, Navy, or NDRC groups. Sometimes one problem would lead to a related
problem in another setting, or experience with a particular technique would
lead to another application of the technique to an unrelated problem.

Our Medalist mentions in his article a great number of the military problems
on which SRG worked, so there is no need to give such details here. The most
famous, and probably the most influential and lasting contribution was, of
course Abraham Wald's development of sequential analysis, full instructions
and tables for the practical application of which saw open publication in
Sequential Analysis of Statistical Data: Applications (Columbia University
Press, 1945); and the theoretical development, in Wald's book Sequential Analxsis
(Wiley, 1947). Our Medalist in his article gives two accounts of the history
of sequential analysis, one written In April 1943, soon after the development;
and the other written from memory In March 1950, when the 1943 memorandum could
not be located. Both accounts bring out clearly the essential roles of our
Medalist and Milton Friedman in getting the development "off the ground"
after they had recognized its possibility of achievement.

Although SRG was formally dissolved on September 30, 1945, our Medalist
stayed on until March 31, 1946 to make sure that some of SRG's other wartime
contributions achieved open publication in a unified form creditable to both
the individuals concerned and SRG. Although he listed himself alphabetically
as the third editor of Selected Techniques of Statistical Anal1sis (McGraw-Hill,
1947), and alphabetically as the fourth of the editors of Sampling Inspection
(McGraw-Hill, 1948) he was in fact the Editor-in-Chief for both.

As Director of Research of SRG, our 1980 Wilks Medalist brought together
an absolutely extraordinary group of research workers in statistical theory
and methodology, In both number and quality. The experience of working in SRG
contributed significantly to the subsequent careers of a substantial number of
the "principals". Many became leaders in statistics in the next chree decades.
Four became President of the American Statistical Association: Bowker (1964),
our Medalist (1965), Mosteller (1967), and Eisenhart (1971). Seven became
President of the Institute of Mathematical Statistics: Wald (1948), Girshick

g 1952), L. J. Savage (1958), Wolfowitz (1959), Bowker (1962), Herbert Solomon
1965) and Mosteller (1975) -- Hotelling had been President in 1941. Mosteller

is the 1980 President of the American Association for the Advancement of Science.
Friedman received the Nobel Prize in Economics for 1976. At least nine
subsequently became chairmen of university departments of statistics: K. A.
Arnold, Bowker, Girshick, Hotelling, Mosteller, Savage, Solomon, Wald, and our
Medalist. Two became heads of major universities: Bowker (of two: City
University of New York and University of California at Berkeley), and our
Medalist (University of Rochester). Three received the Samuel S. Wilks Medal:
Solomon (1975), Elsenhart (1977), now this year's Medalist.
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The influence of SRG continues through the work of its "principals" alive
and deceased (Girshick, Hotelling, Savage, Weld) and through the statistical
tools developed at SRG, theoretical and practical, which have become established
parts of statistics. Several effective statistical consulting groups have since
been modeled on SRG, notably those at the Bell Telephone Laboratories and at
the National Bureau of Standards. But even today it is probably not saying too
much to say that SRG was the best statistical research and consulting group ever.
Those who worked there know this to be the consequence of the high standards of
excellence established, maintained, and insisted upon by its Director of Research,
our 1980 Wilks Medalist.

After all that, whatever more is said Is bound to be anticlimatic, but needs
to be said nonetheless to round out the record and give the full picture of
this champion of statistical theory and methodology.

In the Spring of 1946 our Medalist returned to Stanford University as
Associate Professor of Economics, and immediately instituted steps toward the
establishment of a Statistics Department there. However, before that department
came into being, he had left in the Fall of 1946 to join the University of
Chicago as Professor of Statistics and Economics in the Graduate School of
Business. (Later he was also named a Professor in the Department of Economics,
In the Division of Social Sciences). In 1949, he became Chairman of the newly
formed Department of Statistics in the Division of the Physical Sciences, a post
he held until 1957. During his chairmanship, the Department of Statistics at the
University of Chicago became one of the outstanding departments in its field in
the world a position that it still retains. (In addition, he played behind-the-
scenes roles in the establishment of Department of Statistics at Columbia
University, Harvard University, and the University of Rochester, making a total
of five whose establishment he influenced in minor to major ways.) In 1956 our
Wilks Medalist was appointed Dean of the University of Chicago's Graduate School
of Business, became financially self-supporting while tripling its annual
expenditures, and came to be widely recognized as one of the Nation's very best.

There is an amusing side to our Medalist's appointment to his first tenured
professorship at the University of Chicago. He has no so-called "earned degrees"
beyond his 1932 A.B. from the University of Minnesota. He had satisfied nearly
all the requirements for a Ph.D., some at the University of Chicago, others at
Columbia University; had had two thesis accepted; but before he had completed the
remaining requirements at the University of Chicago, he was appointed a professor
with permament tenure there and became ineligible under that university's rules
to receive an advanced degree from it. He has, however, received three honorary
degrees, Doctor of Science from Hobart and William Smith Colleges (1973), Doctor
of Laws from Roberts Wesleyan College (1973), and Doctor of Humane Letters from
Grove City College (1975).

While at the University of Chicago, our 1980 Wilks Medalist published a
number of noteworthy papers on statistical methodology. The first was a long
paper, "Standard sampling-inspection procedures", presented at the 25th Meeting
of the International Statistical Institute at Washington, D.C., in 1947 and
published subsequently in its Proceedings, Vol. 3, 331-350. This was essentially
an exposition of the basic principles'and state of the art of acceptance sampling
procedures as spelled out in more detail in the SRG book, Sampling Inspection
(1948), then in press. Next was a basic paper, "Tolerance intervals for llnear
regression", presented at the Second Berkeley Symposium on Mathematical Statistics
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and Probability at Berkeley, California, in the summer of 1950, and published in
its Prceedings, 43-51. "Rough-and-ready statistical tests", published in the
March12 isse of Industrial Quality Control (Vol. 8, No. 5, 35-40) was a
composite and updated versIon of some notes on these matters made available
to SRG staff during WW II, updated to include some of the material to be
published In the forthcoming (1952) joint paper with W. H. Kruskal, "Use of
ranks in one-criterion analysis of variance", mentioned earlier. With Harry V.
Roberts (an Associate Professor of Statistics in the School of Business) he
co-authored Statistics: A New Approach (The Free Press, 1956), an 84-page

I work that became a wGdelr used text in English speaking countries and saw
. translation nto German 1959) and Portugese (1964). A paperback versionof the first quarter was issued by Collier Books (1962) under the title,

The Nature of Statistics, and has been translated 
4nto Swedish, Danish.

Norwegian. and Japanese.

In addition, while at Chicago, our 1980 Wilks Medalist served as the
Editor of the Journal of the American Statistical Association for nearly a
decade, 1950-1959. During 1955 he chaired an inner-University study group
formed under the aegis of the University of Chicago, and funded by the Ford
Foundation, to reach a decision on the desirability of a new or revised
edition of the Encyclopedia of the Social Sciences (that had been published
in 15 volumes by the Macmillan Company between 1930 and 1935. (The study group
included members from the University of California at Berkeley, Harvard University,
University of Illinois, Reed College, and Princeton University--see David L.
Sills, "Editing a Scientific Encyclopedia", Science, Vol. 163, 1169-1175, 14 March
1969.) The project layed dormant for five years, until late 1960, when the
Macmillan Company decided to publish a new encyclopedia of the social sciences,
The International Encyclopedia of the Social Sciences (IESS), which saw
publication in 17 volumes by the Macmillan Company and The Free Press in April
1968. Our 1980 Medalist served as Chairman of the Editorial Advisory Board,
and as Chairman of the Executive Committee, for this vast undertaking. Unlike
its predecessor and other encyclopedias, the IESS contains a great many
articles on statistical concepts, theory, and methodology, together with
biographies of a host of individuals who made significant contributions to
statistical thinking and practice, excluding those still alive in the 1960's.
Consequently, anyone wishing to know something about the contemporary state of
statistics--concepts, theory or methodology--or about their historical development,
found this encyclopedia a most useful source. It proved so useful in this regard
that the articles on statistics and articles relevant to statistics published in
the IESS were brought up to date by the addition of Postscripts or by revision
in whole or In part, and republished together with a few additional articles and
biographies, as the Interhational Encyclopedia of Statistics, two volumes, by
The Free Press in 1978.

Our 1980 Wilks Medalist became President, Professor of Economics and
Statistics, and Trustee of the University of Rochester in 1962. His title was
changed to Chancellor in 1970. In 1975, in anticipation of retirement, he
turned over the chief executive responsibilities but remained in administration.
In 1978, he retired as an officer of the university but continues there with
the same title, Chancellor.
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He has been a director of Bausch & Lomb, Inc., since 1963, Eastman Kodak
Company since 1965, Lincoln First Banks, Inc., since 1967, Macmillan, Inc.,
since 1964, Metropolitan Life since 1973, Rochester Telephone Corporation
since 1964, Standard Oil Company (Ohio) since 1977, and Trans Union Corporation
since 1962; and was for fourteen years a director of Esmark, Inc., (1963-1977).

He was a consultant to the RAND Corporation from 1948 until 1966; a member
(1952-1953) of an advisory panel to the Secretary of Armry on operations research;
a member (1969-1970) of the President's Commission on an All Volunteer Amed
Force; Chairman (1969-1978) of the Commission on Presidential Scholars, and
Chairman (1970-1971) of the President's Commission on Federal Statistics, as
well as a member of chairman of various other Presidential or national commissions
and councils. The present-day Committee on National Statistics of the National
Research Council was established on the recommendation of "his" President's
Commission on Federal Statistics to grapple with and help resolve conflicts
over statistical aspects of such national problems as environmental monitoring,
presentation of statistical evidence in court, effect of changes in stratospheric
ozone on incidence of skin cancer, and recently the 1980 Census undercount.

Even more could be said about this Wilks-like individual, but the foregoing
is more than sufficient to explain why the 1980 Samuel S. Wilks Memorial Medal
is awarded

To W. Allen Wallis in recognition of his extraordinary
contributions to the effective use of statistical theory
and methodology by the armed services during World War II,
for his outstanding contributions to clear statistical
thinking and effective statistical practice through
the publications he authored or edited, for his leader-
ship of statisticians, and for his service to the nation
through chairmanship of, or membership on numerous high-
level Governmental and non-Governmental commissions and
councils.
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OPTIMAL ESTIMATION TECHNIQUES FOR
FORECASTING PROPAGATION PARAMETERS

K. E. Kunkel and D. L. Walters
Atmospheric Sciences Laboratory

White Sands Missile Range, New Mexico

ABSTRACT
The prediction of ;tochastic atmospheric variables such as wind

and temperature on time scales of 6 hours down to a few seconds is
being attempted. The statistical problem is to find the optimal esti-
mation technique that combines the existing climatological data base
with current measurements to provide the best real time forecast.
An autoregressive technique has been attempted but yields results
which reduce the error by only 10% over persistence forecasts. Panel
recommendations indicate that mixed autoregressive-moving average
techniques and Kalman filter techniques are the most promising to
attempt.

I. INTRODUCTION
An Important goal of meteorology is to accurately predict the

state of the atmosphere at some time in the future. For the large
scale features of the atmosphere, this can be done in a quasi-deterministic
(if somewhat inaccurate) sense by predicting the movement of large
scale weather systems. However for some purposes, such as predicting
the optical propagation characteristics of the atmosphere, it is neces-
sary to know the small scale, or turbulent, nature of the wind and
temperature fields. The problem that we wish to address here is the
prediction of stochastic atmospheric variables for time scales of six
hours down to a few seconds.

II. DATA DESCRIPTION
An example of the kind of parameter that needs to be predicted

is the temperature near the surface of the earth. Fig. I shows a time
series of temperature for a 15 min period at heights of 3 and 33m.
This figure illustrates the stochastic nature of the variable. In
general, the short time scale variations cannot be predicted determin-
istically. However, the data can be characterized in a statistical
sense. The following are typical characteristics of the data:

l) non-zero, non-stationary mean
The power spectral density follows a k 5 /3 behavior (k - wave-

number) for k > kmin where kmin is some wavenumber scale of the flow.

For kc kmin, the power spectral density has no definite shape. Fig. 2

shows the power spectral density for temperature at 3 and 33m above
ground. The k-5/3 behavior is exhibited for log k > -1.5. Assuming
ergodicity, k can be related to the frequency domain by k =2f/D-
where f - frequency and U mean wind speed.
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Figure 1. Time series of temperature (°C) at heights of 3m (solid)
and 13m (dotted).
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Figure 2. The log,, of power spectral density of temperature vs. log

of wavenumber at heights of 3m (solid) and 33m (dotted),
Units of wavenumber are rad/m. Dashed line show a power
spectral density k"/3 dependence.

3) Low frequency trends are often present. These are usually
tied to the daily cycle of heating and cooling and occur at frequencies

in the range 10- -105 sl.
There are two sources of data available that can be used as the

basis for making a prediction. These are:
1) Climatological data base. These data provide general character-

istics of the data In the past. These include low frequency trends
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tied to the daily cycle and typical expected power specral levels as
a function of time of day and other external factors.

2) Measurements taken on the current day.
The problem then becomes to predict a stochastic variable given clima-
tological data and present measurements.

III, RESULTS
One attempt has been made to solve this problem by using an adap-

tive linear prediction filter similar to one described by Keeler and
Griffiths (1977). This is an autoregressive approach and can be briefly
summarized as follows. If x is the variable (with mean removed) to be
predicted, then the prediction at time t, x (t), is given by

pI
x pt) W Z gi x(t - lut)

i-l

where x(t - iAt) are measured values, At is the time interval, and gi
are weighting coefficients. The prediction error E(t),Is given by

E(t) - x(t) - x p W

Since in general we don't know how to calculate a priori the coefficients
gt, we allow the coefficients to be changed as data is collected in

order to provide the minimum mean square error. An algorithm is used -
which updates the coefficients as each measurement sample is collected
by using the method of steepest descent. This is given by

gl(t + At) = gi(t) + vE(t) x(t - iat)

where
CLL

1x2

2
Ox = variance of x

- constant which determines rate of convergence

This type of algorithm was applied to a number of data sets with at
ranging from 10 secs to 15 min. The predictions were compared with
predictions based on persistence, i.e.,

x p(t) - x(t - At)

By using a wide range of = and I values, the best we could do was
to decrease the mean square error by 0-10% over persistence. This is
not very encouraging.
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IV. QUESTIONS
Our questions to the panel are:
1) Given the nature of the data, can we predict these quantities

significantly more accurately than by simply using persistence or the
climatological mean?

2) What are the limits of predictability? Can these limits be
calculated?

3) What prediction technique is likely to be most successful for
this problem? Possible techniques that have been discovered in the
literature are: a Autoregressive (all-pole)

Noving average (all-zero)
Mixed pole-zero (Box-Jenkins)
Kalman type filter

V. PANEL RECOMMENDATIONS
The problem is a difficult one and may not be amenable to solution.

However, two techniques should be attempted. One is the mixed autore-
gressive moving average technique (Box-Jenkins) for which software
packages exist. The other is the Kalman filter technique.

iI
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SOME REISULTS IOR THE UNIVARIATE NORMAI. RANDOM

LINEAR REGRESSION MODEL PREDICTION THEORY

D. G. Kabe

New Mexico State University, Las Cruces, New 11exico

and

St. Miary's thniversity, Halifax, N.S., Canada

ABSTRACT. Optimal prediction, within the normal theory framework, of one

vector variable by the linear functions of another correlated random vector

variable, when certain values on the predicted variables are missing is con-

sidered. The optimal predictors are derived by using both the conditional

cxrrctation mini.mization theory and the canonical correlation theory. However,

the ;:;.imum liIelihood estimators of the unkno%,n pararjeters are derived only

for the canonical correlation theory.

I. INTRODUCTION. This paper presents sonic of the author's discussion (as one

of the panelists) on tlie following two papers presented at the twenty-sixth

United States Army conference, on Design of Experiments, hcld at New Mcxico

State University, 22-24, October 1980. The first paper, "Optimal Estimation

Techniqujes for rorecasting Propagation Parameters," was presented by K. E. Kunkel

and P. L. WIaltcrs of the United Statcs Army, White Sands Missile Range, New

Mexico; and the second paper, "A Stochastic Mesoscalc Meteorologic Model," was

presented by E. P. Avara of the United States Army, White Sands Missile Range,

New Mexico. Both the papers studied the optimal prediction theory of one

vector variable by the linear functinn¢ of another correlated random vector
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variable, and the second paper considered.such theory when certain sample

values on the predicted variable were (missing) unobservable. In his dis-

cussion the author pointed out some known results (the derivations given here

are different), within the normal theory framework, to the above problems.

The prediction of one vector random variable by the linear functions of

another correlated random vector variable, within the normal distribution theory

framework, is a very well known problem in statistica! literature, and an

exhaustive paper on this topic is published by Scobey and Kabe (1980). The

two classical techniques often used for this purpose are: 1) the conditional

expectation M'inimrization theory (CEMT), and 21 canonical correlation theory.

In brief we shall discuss these two techniques. Both are based on the fact

that for two correlated vectors x,y

E(y-f(x))'(y-f(x)) , (1)

is minimized when V(ylx) f(x), and f(x) is the optimal predictor of y,

for a given x.

The knr,'-n results of CE16IT aid canonical correlation theory (CCT) are

presented in the next section, prediction intervals are derived in section 3,

and missing values are considered in section 4.

So•,ectimes the sa.re syibol denotes different quantities, however, its

meaning is made explicit in the context.

II. SOME USEFUL RESULTS. We first present the results for CE•T. Let y be

a q component vector (all vectors are column vector and all matrices are full

rank matrices) with E(y) = 0, E(yy') z F, E(x) = 0, E(xxl) = 6,

E(yx') = B, B q x p, x p x 1, p : q, and then consider the minimum value

prohlem
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Min {Min E i(y-Ax)'(y-Ax)lxl)
A x

Min E {Min [(y-E(ylx))'Ly-E(ylx)) (2)
A. x

((Ax-E(y'Ix))'(Ax-E(ylx))Ix } ,

-which by using (1) may be written as

Min F {E(y-Ax)'(y-Ax)!x}, Ax = I-(y!x) (3)
A

However, (3) reduces to

Min E (y-Ax)'(y-Ax) Min tr jE-2AB',AAA']

A A

Min tr fr-R 1]B' ÷ (A-HS'}) A (A-Ri')'1 , (4)

A

where A is q- p. From ( o) clwiousily

A = BA , i.e., AA =B (5)I
is a necessary condit'on for our minimi-i:tinn problem.

Now we have to find that A. which yields (7-&A') singular. We now

consider

SHMin tr (-A,.A') ,6)

A

to find thc Iiuiijlnnuin of (2). By our a;stimptioI1 A S;tisfics

0 = kE-MA'= IF- 10- v,' (7)

whence a solution A to (7) is
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A& TA (W 0)', AAA' A I t' I ... * t )t' 1; (8)

where

q .qT T (t it.. . . -- = A ( i t . .

I 111 qqq

and A > A q are the roots of F and q x T is the matrix of tile

Ii I

latent vectors of E, '.o p x p is any arbitrary orthogonal matrix. With A

given by (8.), find from (6) that

Mi tr t-A ] A . * A (10)
A p+l q

Now with A givcn by (8), we find it coa:v',nicnt to denote Ax hb of, and

say that Nt of tim , illy p predicts y, for b given x (acthoal aY estimates

A 12Q 1 ~
y =Ax BAf'x, BA' AA2  TA2('0' .(1

When A is given by (8), equation (11) predicts y for a given x by CFMT.

byhus-,mn al) paoia orelaion:- between y, and x are unity, i.e.,

from (8) the generalized variance of (x' y')' vanishes. CE7MT ex actly follows

CCT except that in (Nir the equation (3) is not satisfied. Thus CFSF' deals with
the singular normal distribution theory and CCo n eals with the nonsingbilar

noratal distribution theory. Since the results for the singylar normal distribu-

tion follow exactly' on r~he samc lines a-, for the nonsingular czise, we consider

paramnetn r estimation for ()CT on!y.
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In CCT A satisfies (S), and also (11), except that the second member

of (11) is now discarded. The p canonical correlations between y and x

are the positive square roots of

IP 2 E-BS-1 B'I - 0 , (12)

and the canonical variates of y and x corresponding to a particular P

are. •'y and n'x, ',ncre • and n satisfy

2BB

If all the canonical correlations are zero, then y cannot be predicted by

linear functions of x. When all canonical correlations are unity, then y

is a linear function of x, given by (11). When some canonical correlations

arc unity, aoJ othcrsb hct%,ccn zero and unity, then the prediction is to be

carried on partly by CENIT and partly by CCT. An example of such a case is

givenr by Kshirsagar (1962), and discussed by Scobey and Kabe (1980). If all

canonical correlations are between zero and unity, then the first member of (11)

holds and A :a:isfies (S), but not (7). When (12) holds a'y is optimally

predicte,' by 4 linear function of x only if a is proportional to r, where

Ssatisfies

(02 -BA- B') = 0, and P& flIn (14)

In this case
I 1
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If the means of y and x are not zero, then (11) changes to

A
y = E(y) + A(x-E(x)) = F(y) * B6 (x-E(x)) (16)

Thus to predict y optimally by linear functions of x, the population

parameters must be kno%,n. If the population parameters are unknown, then they

are replaced by their maximum likelihood estimators, when a sample of size N

Oil X' )" ' is av,-ai 1-.,5 c. Thus e.g. , in the usual notat ion

1 2

Is -s s -si = IIs S S ,SS12 21 11 12 22' 11 12 22 21S1l'

P p A2

s - i Tl-) (17)22 i i

is the sample counterpart of (15), and

U Y - S" S 1 ' -1 ,

is the maximum like:ihood estimator of

A -
.y-.v) = V'(y-,\x) - I: B' (19)

However, the optimal properties of such sample counterparts are not as yet

fully' inv .;L':ý-ited in statisticA41 literatvre.

111. PRIITC:"ON INTI.lVAI.S. We obtain prcdiction intervals for a single future

obse rvati o. Thces prediction interval; ire hbascd oil R;0o's II statistic, see

Let a (p+(I) component vector (x' ,y')' hive a (p1i) variate normal

di str ibution iith .ean valtie u, and covariance matrix T. Then assuming 1i,7

to Foe i:,rtitioted corr-poiidinvly we have
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E(ylx) = J2 -E E W n -1x (20)

as the linear regression of y on x. The equation (20) is known as the

'" univariate random linear regression model. We take (y - S2 1 S 1 X'1  and1-

B = IS12 as the maximum likelihood estimates of n and B respectively,

where (X', y')' is the sample mean vector and S is the sample dispersion

matrix based on a sample of size N on (x', "' If (x', y')' is any

future observation, then from (16) the predictor of y is

= V " .'21 x + ,1Sl' X 11--

- s 2 1s 1 1 (X-X) (21)

Ihe loint density of S and v = (x'-x', y'-7')' is

A -1 ~ j(N-p-q-2)

izS,v) K ex;, l_- t r ;+hvv,1flNI - .. ,

where h = N/(N'I), and K as a generic letter denoLLc. the normalizing con-

stants of density functions in this paper.

Now partition S, v, E as.

F "7 -1nrl rl:]

-11 12 , vI

S V= l (23)

I) ~ 2 --i,,tSll, 12' u 2 $21 11 12 11l
w1ri tc 21 a
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g(S 1 1 ,D,B,vl,u) K exp {-jtrc1 1S 1 1  - trE 2

-'rr2(B-8)' S1 1 (B-0) - v- 1h (ul(0-8)v2) 1

2s11 2
E2 (u+ (B-B)'l)}I

i(N-p-q-2) !(N-p+q-2) _

Now integrate out B and find the density of. u, v1 , Slip and D to be

I -I I tr22D
g(SlOD,u,v1 ) = K exp {- ttrZllS1  - 1 '2

21 hv 1v - 1 hu'Z 2 2u/(1+hvls 1vl)}
21 I 2 1 2

-I - .q -(N-p-q-2) 1(N-p-?)'14-1v istl l -! V 21 (26)

It now follows from (76) that

U = huLD1 u,'(_-v' lv

has the densit:'

g(U) = K U` /(l÷U) , (28)

and hence the prediction intervals for y, for a given x, can be based on

(28).

IV. MISSING OBSIERVATIONS. If a sample of size k (X' Y')' is now available

on (x',y')', and a sample of size (N-K), N 2 K >- q + I is later availabie

on (x',y')', then the relations between the maximum likelihood estimntors of
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the original sample and the total sample are available in the literature, see

e.g., Kabe (1967). The results given by Kabe (1967) can be easily modified to

suit the missing value prediction theory.

We now state the problem proposed by E. P. Avara and its possible solution

outlined by the author. The first sample is (X', Y'J' and the second sample

is (Xk, 0', as no observations on y were recorded in the second sample.

The problem is how .Ioe- the entire theory of optimal prediction be carried on

under such circunistancezl.

The fact that the problem of missing values forms a significant line of

research is known in the statistical literature. However, the extreme diffi-

culty involved in its mathematical treatment is the cause of its not being

thoroughly investigated as yet.

Let X denote the mean of the entire sample and x the mean of the first

K obh401-'at iois. I f :111du 5 2 S are the old and newobevatins. If "11 I1' 22'' an3 1' " ~2

maximum likelii'd e,ýtimates of 11' z2' 22 respectively, then a relation

between old and new estimates is desired. Obviously Sl (XNX -NXNX'N)IN is

tl..,- n•iaU,• lik'Nelihood estimatc of . Further from 21)

y hS Sl-x (29)'21 I1 N 1 (9

is the preciictor of )N' and hence is the maximum likelihood estimate of E(y).

The constant h = K/(N-K) from Kahe (1967). To derive the relations between

the old and new maximum likelihood estimates we first consider the old data
.!

representation. If U. [I, 01, V = 10, 1), then the sample is represented

by

133

*1



X S*~ U (30)

y S.. . .1 - _.1 2 -
2 1.1 1  .22-S 2 1 S 11 S1 2

However, the entire sam~ple must be represented by

1

x... .'

X "2 " .. . .

'N 11

Y szý I X uI s V (32)

-2 -1 1 z-

However, Siith there are no new observations on (32) must reduce to

It follows fror- (31), -ind (33) thit

21  isi 11 (34)

and hence

)IN=S S' S-' IN (35)21] 11/

is the maximum lik-lihood estimate of Aqaj i nfrom (3.3)

S. S*-l S'- N• + "S2,,11" M'~ .- V (36)

S* =

21 S1 S1I 1 212 (36)

iS the maIXimIUm1 likcl iluwd cstimator of V'y)

This research it si ciported by a Nat ional ecsearch C o esncil of Canada

grant A-401o.
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ADAPTIVE MEDIAN SMOOTHING

William S. Agee and Jose E. Gomnez
Mathematical Services Branch

Data Sciences Division
US Army White Sands Missile Range

White Sands M~issile Range, NM 88002

ABSTRACT. We have developed a robust data smoothing method which was
LL motivi'ateoythe necessity of extracting a small but nevertheless important

~I signal which is imbedded in a large band of noise. It is assumed that
nothing is known about the signal other than that it is of significantly
lower frequency than the noise in which it is imbedded. The noise variance
may vary over a rather large range. The signal to noise ratio may also
vary over a lbrge range, sometimes the signal will predominate but usually
the signal will be almost invisible in a large band of noise. We adapt
Tukey's idea of using medians to smooth data for exploratory data

~. analysis to develop our robust smoother for extracting this small signal
from noise. If Zks k-1, 2--- are the measured values of signal plus noise,

the smoothed values of this time series are given by

"Ykamedian (Z k-i Zk-i+l) --- ' Zk~i)

where N is variable and is made data dependent by choosing N as a function
of locally computed values of the signal and noise statistics. The
application of the rcbust adaptive smoothing technique is illustrated
onsome WSMR data sequences.

INTRODUCTION. Median smoothing has been strongly advocated by
we avea nisytime sequence of measurements, x.l, 1-1,2,--- , which

we wnt o sooth Meiansmoothing of this measurement sequence
bascaly mansto omptea smoothed value at any time ti by the median

of the measurements about t. More specifically, the smoothed value

at time ti, dntdby xi, is computed by

m =jedN (xc )()
j0,N

The smoother in (1) has a smoothing span of 2N+l points.
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[- S(vweral advint-ges of median smoothing are readily apparent. Median
smoothing is very simple to implement since it only requires the use of
a subroutine which will order the measurements. Median smoothing does
not require the specification of a model of either the signal or noise,
i.e., it is a nonparv-etrir, method as opposed to most other smoothing
methods. Median sm~cr.:',. robust. It tends to reject spurious values
or outliers in the .ei'.. .rnF::,ts. An outlier or short burst of outliers in
the measurements wil ,ic., arpeer in the smoothed output if the length of
the burst is smaller I " 1 points. Median smoothing has been applied
to speech processing, [3] and [4), and to image processing, [5] and [6].
Our motivation for the development of an adaptive median smoothing routine -1
was for the smoothing of radar error signals.

SMOOTHING RADAR ERROR SIGNALS. Let R0(ti), A (ti), and Eo(ti) be

the range, azimuth, and elevation output values of a radar at time ti when

tracking a target. These output readings specify a point in space at
which the radar is pointing. These values are usually close to the true
target range, azimuth, and elevation values, which we denote as R(ti),

A(ti), E(ti). The target tracking errors are defined as

rT(ti) - R(ti) - Ro(t 1 )

aT(tl) = A(ti) - Ao(t1 ) (2)

eT(ti) - E(ti) - Eo(ti)

Measured values, r(ti), a(ti), and e(ti) of the tracking errors are

available. These measured values of the tracking errors are called the
radar error signals, These errors signals are usually very noisy compared
to their signal content. We want to obtain smoothed values,

r(ti),-a(ti), and e(ti) of the radar error signals in order to constructSto 1osrc

improved measurements, Rm(ti), An(ti), Am(ti), of the targets range,

azimuth, and elevation.

Rm(ti) = Ro(t 1) + r(ti)

Am(ti) = Ao(ti) + a(ti) (3)

E m(t i) = E (t.I) + e(ti)
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Median smoothing appears to be an immediately applicable method which
can be quickly implemented for the task of constructing smoothed values,

r(t 1 ), a(t 1 ), e(tI) from the measured error signals, r(t 1 ), a(ti), e(ti).

However, when one attempts to directly apply median smoothing to the
error signals, some common characteristics of radar error signals
reduce the quality of the smoothed output to such an extent that the
attempt is unsuccessful. A constant span median smoother cannot be
applied successfully to smoothing radar error signals because the
signal vs. noise content of the measurements varies over such a wide
range during a mission. Fig 1 gives an indication of this wide variation.
Initially, when the radar is acquiring the target, Fig 1 shows a rather
strong signal content as compared with noise. This portion of the
measurement sequence would require a short span smoother in order to
preserve the signal characteristics. In the later portion of Fig 1
the range of the target from the radar is increasing and the elevation
angle may be quite low resulting in a very large noise content relative
to any signal which may be present. This portion of the data would
require a large smoothing span in order to filter out the large amount
of unwanted noise. Thus, the characteristics of the radar error signals
force the use of a variable span median smoother where the span at time
ti must be dependent on the relative content of signal and noise at

times near ti. We call the result an adaptive median smoother.

ADAPTIVE MEDIAN SMOOTHING. An adaptive median smoother is defined
by

xi = med {xj ), NIN<Ni<NMAX (4)
JO,N i 

M
The choice of Ni is based on the measured values, xj, where t is near

ti. The maximum, NMAX, and the minimum, NMIN, vdlues of Ni can be

specified by the general characteristics of the data and thru experience.
The definition given in (4) obviously does not specify how to obtain
smoothed values near the beginnings and ends of data sequences. At the
start and end of data strings we use the simplest possible smoothing:

START

x1 " xi

x2 = med (x 1 , x2, x3 ) (5)

x = rmed (x ±J) i<NMIN

j=O,i-l1
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END

xL xL

X med {XL2b XLl1 XL} (6)

xL = med (xL ) i<NMIN• L-i JOi L-ij

In (6) the subscript L denotes the last point.

METHODS OF ADAPTATION. In order to adapt the span of the median
L. smoother to the local characteristics of the data sequence at each time

point ti, we examine the residuals in the vicinity to determine if there
is some signal remaining in the residuals indicating that we have been
oversmoothing and should shorten the span or whether the residuals
exhibit a random behavior indicating that we could possibly lengthen the
smoothing span. We have used two different measures, the serial correlation,
and the Von Neumann ratio to examine the residuals for trends. In using
the serial correlation we have tried both the usual parametric definition
and also a nonparametric correlation coefficient which will serve to
preserve the robustness of the overall method.

Let t1 be the current time at which a smoothed value is being computed
and let r i1 , J=l, NMAX be the residuals from the smoothed values

ri 1 = xi-j - x i-i (7)

Let r a ave (ri 3 ) be the sample average of the residuals.
j=1 ,Ni

The usual definition of the serial correlation coefficient is given by
4)(r )

r(8)
N -1

J=l
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If SL-S.:Su we conclude that there is no reason to believe that the

residuals are serially correlated. In this case we can increase the
smoothing interval, i.e., we set NS---NS+2, subject to NS<(2NMAX+I).
If S<S or S>Su, we conclude that the residuals are correlated and may

contain a significant signal component because of over smoothing. In
this case we set NS4--NS-2 subject to NS>(2NMIN+1). The upper and
lower limits for large Ni are

-1 + 1.645 -1 1.645A7-7
S NiI and S = N 1

For Ni<20 we use the tables
N Su SL

5 .253 -. 753
6 .345 -. 708
7 .370 -. 674
8 .371 -. 625
9 .366 -. 593

10 .360 -. 564
11 .353 -. 539
12 .348 -.516
13 .341 -. 497
14 .335 -. 479
15 .328 -. 462
16 .322 -. 446
17 .316 -. 432
18 .310 -. 420
19 .304 -. 409
20 .299 -. 399

In order to preserve tho robustness of the median smoother, we should use
an adaptation test which is itself robust. This is easily achieved in the
serial correlation case by using a rank correlation coefficient in place of
the ordinary serial correlation coefficient given in (8). Let R(j)=rank(ri~j),
ri+j k(ri k 21.1i-1) and let R,(j)=rank(r ) ri+j+l (ri ,k1,Ni-l).

r +Lr k~lN-)a ijl+j+l j~ +k+l
Then with dj=RI(j)-R(j) we compute the Spearman rank correlation coefficient

as Ni-l

6 d
J-l 1

Sp I N -N(N.T)(N2)-
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If Su.SI•SL we conclude that there is no reason to bolieve that the

residuals are serially correlated. Thus, we increase the smoothing
S, interval by NS-*--NS + 2, if either Sp:S or Sp<SL we decrease

the smoothing interval by NS --- NS - 2. For large values of
N the upper and lower limits are

S 1.645 andS "-.645

For values NilO. we use the following table

N S S

51 -16 .9 -. 9

7 .771 -. 771
8 .679 -. 679
9 .643 -. 643

10 .600 -. 600

Another useful method for adjusting the smoothing span is the
Von Neumann ratio which is the ratio of the mean square successive
difference to the variance. Specifically,

N I
V (ri-j+l "r ij

NI~ 1j~(10)

Z (r F)2
j 1

Then if VLV<V we decide that there is insufficient evidence that the

residuals are correlated so that we then increase the smoothing interval
by NS-0 NS42. If either VVL or V>Vuthe residuals show evidence of

being correlated so that we decrease the smoothing interval by
NS-* NS-2. The upper and lower limits are sample size dependent and
are chosen by the following table.
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N1  SL Su

5 1.0255 3.9745
6 1.0682 3.7318
7 1.0919 3.5748
8 1.1228 3.4486
9 1.1524 3.3476

10 1.1803 3.2642
11 1.2062 3.1938
12 1.2301 3.1335
13 1.2521 3.0812
14 1.2725 3.0352
15 1.2914 2.9943
16 1.3090 2.9577
17 1.3253 2.9247
18 1.3405 2.8948
19 1.3547 2.8675
20 1.3680 2.8425

EXAMPLE-SMOOTHING RADAR ERROR SIGNALS. Figs 2-19 present the application
of adaptive median smoothing to smoothing of range, azimuth, and elevation
tracking error signals from a WSMR radar. The minimum smoothing interval
was 11 points while the maximum smoothing interval was 41 points. The method
used to adapt the smoothing interval to the data was Spearman rank correlation
coefficient.

Figs 2-3 present the raw range error signal. Figs 4-5 show the smoothed
range error signal and Figs 6-7 show the range residuals. The range tracking
error does not exhibit significant signal content so that the smoothing of
this signal is quite uninteresting. Note that the smoothed range in Figs 4-5
show bumps and dips having flat tops and bottoms. These flat peaks and valleys
are characteristic of median smoothing. Tukey suggests a method of renoving
these peaks and valleys but we have not attempted to implement this in our
median smoothing routine. Note also that the smoothed range exhibits a very
constant behavior. This constant, which is not zero, may be due to the
granularity of range output readings.

Figs 8-9 are the azimuth tracking error signal. At the beginning the
radar is acquiring the target so that the error signal has a very strcng
signal content. After the target has been acquired the signal level decreases
drastically and as the tArget recedes from the radar the noise content of the
tracking error increases until it is virtually one large band of noise.
Figs 10-11 are the smooth azimuth tracking error and Figs 12-13 exhibit the
azimuth tracking residuals.
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Figs 14-15 are the elevation tracking error. Again, this tracking
error indicites a strong signal when the target is being acquired. Near
the end of the mission the noise amplitude becomes very large. Also, near
the end of the track the elevation tracking error indicates again a strong
signal content. Figs 16-17 present the smooth elevation tracking error
and Figs 18-19 are the elevation tracking residuals.

CONCLUSIONS. Adaptive median smoothing is a very simple method which
can be readily applied to smoothing almost any data sequence without
modeling either the signal or noise characteristics of the sequence. Adaptive
median smoothing is also robust with respect to outliers. When applied to
smoothing radar tracking errors as in the example given above, adaptive
median smoothing does remarkably good in extracting the signal from the
noisy data sequence. Some additional features of Tukey's proposals for
median smoothing remain to be implemented and tested in our adaptive median
smoothing. We plan to test the use of repeated median smoothing and the
technique of twicing, i.e., resmoothing the residuals in our adaptive median
smoothing routine.

4
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FITTING AN ELLIPSE

Donold L. Buttz
US Army White Sands Missile Range

White Sands Missile Range, NM 88002

ABSTRACT

Three program procedures to fit on ellipse to x, y data constrained
by two criterias are described. The first procedure is an iterative
approach and the remaining two procedures are of a statistical nature,
using a line of regression.

1. Introduction

GeVinning with an impact pattern plot as points on an x, y graph, the
problem is to evaluate an ellipse of minimum area circumscribing 95% of
"activated" submunition impacts. The first procedure hereafter named PARAM
is an iterative procedure. The second procedure known as SELLIPSE is a
statistical procedure and the third procedure labeled ELLP3 is also
statistical in nature. However, ELLP3 is more a probability approach
to fit an ellipse of minimum area to a plotted impact pattern.

The problem of fitting an ellipse to impact pattern arose as a scoring
criteria. The two criterias for that scorinq are that the area of the
ellipse must be the smallest while secondly containing exlctiy 95% of the
"activated" submunition impacts.

The result of every procedure must provide the area of the ellipse,
the length of the major and minor axes and the angle of axes rotation.

This paper shall describe the program procedures PARAM, SELLIPSE and
ELLP3 in that order and then a summary of comparative results.

2. Program Procedure Called PARAM

The notation and relationships expressed below apply to the following
discussion:

A is the semlmajor axes
B is the semi minor axes
C is the ellipse focal point

ELLIPSE CENTER AT ORIGIN
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Stardard equation of an ellipse: A2 + 2 -

Area of an ellipse y. AREA iTAB.

Y 
Kg

ELLIPSE WITH CENTER AT (h,k) AND NEW AXES x' AND v'

,F2 ,2
The equation of the curve relative to these axes is A + a 1.i

The equaticn relative to the x and 2 y axes, by setting x' = x - h and
y= y - k becomes, (x-h) 2 + ( I 2

This is the standard equation of the ellipse with center at (h,k) and major
axis is parallel to the x-axis.

-- A,B, and C are related by the

(C , 0 equation A2 B2 + C2

P(x,y) or P(x',y')

XeX

AXIS ROTATION THROUGH ANGLE 8
j

cos(a + e ) - sin(a + 0 - YR
J RR

X1

Cos (a) cos() -(a
R R

Let it be noted that •'or purposes of this procedure an activated bomblet
will be defined to lie within the ellipse if and only if the sum of its
distance from (C,O) and (-C,O) after adjustment for axis rotation is less
than or equal to "2A". secondly each fitted ellipse will be centered at
the mean center of impact in the rotated coordinate system, (h,k).
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Aflur Atvratinp until elhas bete adju..tud throuuh 379 dugrvus
the ellipse of minimum area is d•ur3nirtid. The equation of the el]ipse
of minimum area which contains 95% of the activated submunition impacts is

(x-h) (y-k) 2  1
Az'

v•hru A and B wtr. Faved from the coniparisons, and the rotation of te
cordnrale axis .•r•em is specified by e

3. r T_,Clan, i'rOcdure Called SELL]T'S11

SELLIPSE computes the sltpe M, aijd the y ib'e.cpt B from the normal
equations for linear regressiin.

YCE

:4tJ----'- - X

Vhe djished figure indicates the possible ellipse to be determined.

NNext, SELLIPSE transforms to center of x, y distributions. E

N
N

ycen - N

x' - x - xcen; Y' Y Y - ycen
SELLIPSE rotates coordinates through an angle a to obtain the x" and y"
coordinates. y

- -x'sina +- y'cosac
S - -4

x'' - x'cosa + y'siniact . -.

SELLIPSE computes the standard deviations of elliptic distribution along
x" and y".
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The standard deviation In terms of x and y respectively are

a•° . • /•_~z1(NtxZ _ (1K) 2 ) + M2 (NZy 2 - (Ey2) 2) + 2H(NIXY - ZctY)]

2 (Zx) 2 ) + (Nly2 - (0y)2 ) + 2M(NExy - Zxy))

y N ____

The equation of the ellipse in terms of x" and y" is

2 B211 + 1_

where A is the semimajor axis and B is the seminTinor axis.

The ratio A/o is k and the ratio of B/o is k.
x Y

A = and B w ka
x

where k is the percentile radius.

SELLIPSE does a computation to circular- coordinates.

Let x'" = x"/Ox and y'" = y"/O

* I

The equation of 3 circle is

x,,, 2 + y,,, 2 = R 2

then R = '

wherc R is the radius.

SELLIPSE computes the mean and standard deviation of the radius.

N

mean N

-( R 2
7 mean
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J'qr.ntilt lHadius is defined a-, fullows

R% Z NMEAN +RX

where KRfor a normal distribution equals 1.645 for 95% ellipse.

In a normal probability distribution function, f(x) is the probability density
w here f(x) - (1/ 4V)exp[-(1/2)x 2 .
For negative- values of x, one uses the fact that f(-x) * fWx).

Also, let F(x) be the cumulative distrubtion function. Therefore:

F(x) = J -i exp[-(1/2)t 2)d.

For F(x) 951" x becomes 2.645 our K Note that R% = RMEAN . KR oR.

The semi major axis is A = R'.o x
and the semi minor axis is Bi RýOy
The rotated angle is a = TAN (W4).

The equation of the ellipse is then

x 112 + 1.02 = 1

~:.
Ai
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4. Program Procedure Called ELLP3 1

Assumptions and derivations will be discussed first.
The data are presented as N ordered pairs (x ,y ) representing locationsof submunition impacts in a north-south/east-ekt rectangular coordinate
system. x and y are assumed to be jointly distributed, normal, random* • variables with respective means M and M and non-zero variances estimated
"by S2 and S2  where X Y

x y N-

52 -i~lloi -Sj N- 1 , where J - xy.
There may exist between x and y a non-zreo correlation whose coefficient,
R, is estimated by

N N N
R I iyixl - i~ixi iilyil/

(N - U)SSy

The joint probability density function is approximately

f xy(X,y) 1 1 2 e-Q(xY)
2rS S / -R

xy

where

Q(x,y) . 1 x- x-M y-M) y- Y21
Q~x~) &2(1 - R2) t(-S ) 2R(-•--)(-----5 ) + (_g__)]

x x y y

"Modern Probability and its Applications", by Emanuel Parzen, (John Wiley
Sons, New York).
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x-M•- N y - y -NM"
f --2

£n(PlZ a]) - 2(1 - R") - 2 y )

Sx Y y

By translating axis so that the new origin is at the joint means (M , M "
and simplifying, the equation becomes: x

- 2(l - R2)in(PJZ > z])S 2S2  Z *Sx'2 - 2RSxy' + sy
X y y "

By rotating the axis ebqut the new origin and simplifying, the equation
becomes:

-2(1 -R
2)in(pIZ > z])S 2S2  xh12 (S2cos2EC- 2RS S einecc's(' + S2sin2G) +

x y y x YX

y" (S 2 sin2 6 + 2RS S sinecost + S2 cos 2 8) +
y xy x

+ x"y"(-2S 2 sin~cos6 - 2RS S cos 2 6 +
y x y

+ 2RS S sin2 e + 2S 2 sin6cose)
xy

setting the coefficient of x"y" equal to zero yields the following
for 0:

1 -1 2S S R
e * tan S~ '

x y

Simplifying, to derive the equation of the ellipse

1 [2(z-R2).-..C 2 PZ z ]))s2 s2  +

s~ae - 2-5 ~ysin~o~e+sinT71,,2

xx
2S1 2)(-pn(p[Z , z]))S2S2 "!

S2C + 2RSXSysin~cose + S~oe

'I ~175
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l- I.2,1 - ~R2)(-In'P[Z • z]))S2S 2

20 X V
where As e-2S ecose + Spn'8

I2(1 - R2)(-Ln(P(Z z)SS

2sin~d + 2RS S sin~caS8 + S'cos 0-
ry .- .- . ..

The ellipse is plotled with center (M x M\) with semi major axis A,

with semi minor axis B, and with rotatim e relative to the usual

north-sou'i /eatt-west coordinate a•;is system. The .onstants R,S

S y, Sx 2 , and Sy 2 are P.1 compied from the coordina4 .es before rofation.

The following discussion applies to derivng of PPOGRA.NI ELLP3 ýemrn-

strating the intermediate steps.

Recall that we translated the old axis to the ne% origin (Mx ,M ).

(x,y) x = x' +M (x',y')
OLD y = yI + M NEW

Y

then in the new axis our origin is (0,0).

As a result of translating we get:

-2(1 - R?)Zn(P[Z > z])S 2 S 2 
- S 2x'2 - 2RS S x'y' + S2y4 2

xy y xy x

setting the left hand side of the equation to K, 2 constant, we get:

K & S2x' 2 _ 2RS S x'y' + S2xy'2
y xy x

We do a rotation of axes thru 8 with respect to the old axes about

(10,M ) which is now (0,0)'

(x'.y') x' = x"cose - y"sin8 (x",y")
TRANSLATUD y' - x"sine + y"cose ROTATED

K S $ 2 (x"cos6 - y"sine) 2 - 2RS S (x"cos8 - y"sine)(x"sine + y"ciba) +y xy

+ S2(x"sin9 + y"cose) 2

K -x" 2(S 2CO28 - 2RS S sin•cos6 + S 2 sin 2 e) + x"y"(-2S 2 sin~cos8 -

y xy x y

-2RSxSycos 2 a + 2RS S sin2 e + 2RS2Sinecose) +

+y12(S sin28 + 2RS S sinecose + S 2 cos 2 e)
yxy x

Take the x"y" coefficient and set it equal to zero

-2S 2 sinecosO - 2RS S cos 2e + 2RS S sin 2 @ + 2S 2 sinecose - 0.
y xy xy x
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Using the identities sin28 - 2sin8co98 and cos28 - cos 2 8 - sin2 e one obtains

(S2 - S2 )sin26 - 2RS S cos2 - 0.
x y x y

Making use of the identity sin26 - tan29cos28 this becomes

cos2e[tan2e(S 2 
- S2 ) - 2RS s ] - 0.

X y x Y

If the product of two numbers is zero, one or the other,or both are zero.
In case

tan2e - 2RS S /(S2 - S2)

then

1 tan (2RS S /(S 2 
- S1)].

2X y x y

We use this value for 2 6 and eliminate the x"y" term. Thus leaving terms
containing x and y" with coeficients we indicate by cx,, and cy,,, where

x11 = S2 cos 28 - 2RS S sin~cos6 + S2 stn2 ey xy x

c S2sin 2 8 + 2RS S sin6cos8 + S2 cos 2 O
y y xy x

and
2 2

K -2(1 - R2 )zn(P[Z > z])SxSy
x y

With the elimination of the x" y" term we get the equation of the ellipse
in the translated rotated axes:

, ,1 2 1 1 2
K - x c,, + Y C ,,

or

X12

K/cx,, K/c y,,

We see from this that the semimajor axis A and the semiminor B have the values

AC y

when the rotated angle 8 is

tan (2S S R/(S 2 _ S-)]
2 x y x y
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METHODS FOR APPROXIMJ' 1NG MATHEMATICAL FUNCTIONS

Donald W. Rankin
Army Materiel Test and Evaluation Directorate

LIS Army White Sands Missile Range
White Sands Missile Range, NM 88002

ABSTRACT. The increasing use of small computers to control complex
systems and equipment often gives rise to the need for approximating mathe-
matical functions under restrictive conditions. These conditions may be so
varied that no single solution can be called optimum.

Several methods are discussed in some detail, with a view toward simpli-
fication. In fact, some of the procedures easily can be committed to memory.
An unexpected dividend allows the analyst to employ the powerful features of
some programming language even though it may lack a needed mathematical
function.

A partial list of subjects addressed includes:

(1) Power series. A method for developing another power series which
converges more rapidly.

(2) Padd approximations (rational functions). Developing a Padd expres-
sion from a truncated power series. Reducing the Padd coefficients to
integers (although the function is unique, its coefficients are not --- a
powerful advantage).

(3) Operations whicn increase accuracy.

(a). A linear combination of two approximations can be much more
accurate than either alone.

(b) Properly restricting the variable range can markedly improve
the rate of convergence.

(c) A Pad6 expression can be "optimized" for a stated variable
range, in effect embracing both of the above advantages in a single
expression.

(4) Tschebychev polynomials. Tschebychev series. The necessity of
employing a transformation of variables. Choosing a transformation which
simplifies the Tschebychev expression and reduces the labor of computing the
coefficients.

(5) Maehly's nmethod of developing a rational function from a Tschebychev
series.

(6) An efficient square root algorithm which does not require access to
assembly language. Extension to higher roots.
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I. INTRODUCTION. There is increasingly widespread use of embedded small

computers to perform monitor and control functions in all manner of complex

systems. The mushrooming demand has triggered a virtual explosion in the

computer industry. But equipments are so different, and conditions can be so

varied that no library of software routines can hope to avoid either paucity

or obsolescence.

This paper, then, is not a catalogue of mathematical approximations.

Rather, it is a discussion of several methods which can be used to produce

required approximations.

The methods can be applied to any mathematical function which can be

developed in a power series. Analogously, a digital filter can be synthe-

sized to approximate any physical process capable of being expressed as a

linear difference equation of any order.

An unexpected dividend accrued recently. An analysis program was written

in COBOL to take advantage of the powerful "bookkeeping" features of that

language, even though it contains no subroutine for computing required

logarithms. Employing the methods herein, a suitable subroutine was easily

devised.

II. RATIONAL APPROXIMATIONS TO CERTAIN MATHEMATICAL CONSTANTS. Sometimes

it is 'useful to be able to express a mathematical constant as a ratio. This

is particularly the case when a computer (or calculator) will compute with

greater precision than it will store or accept inputs. The author owns a

calculator which computes to eleven digits but accepts, at most, eight-digit

entries.

A carefully chosen ratio will deliver as many significant digits as there

are total digits in the fraction (reduced, of course, to lowest terms).

There are several methods for searching for these approximations. We

illustrate a method of continued fractions.

Suppose we need an approximation for i = 3.141592 653589 793238 46

Taking the reciprocal of the fractional part, we express it as

1
, = 3 + 7.062513 305931 045769 8

Repeating the procedure,

1
n 3 +

7 + 15.996594 406685 7199

It is obvious that

3 3+1

7 16

182



will be an excellent approximation. Unscrambling the continued fraction
yields
S16 355

3 * 34. 16 3 in error by only 2.67 x 10-7.

If every numerator is unity and every convergent begins with an integer,
convergence is assured, but may be slow (e.g., lnl0). A convenient way to
hasten the process is to begin with almost any recognizable approximation,
then apply the continued fraction technique to the residual. Thus

ln0 10 = 2.302585 092994 045684 018

23 1

- 10 386.833279 229539 353860 ...

It is immediately apparent that

23 1
1I0- j0 + 386 +5

will be an excellent approximation. In vulgar fraction form

534431% 10- 132L2 , which errs by 3.6x 10.10.

Similarly, e 2.718281 828459 045235 36 ... can be expressed as

19
-9 + 0.003996 114173 330949 646

whence

19 1
- 250.243100 328250 339641

from which

e019 4 2721 (error a 1.1 x 10- 7 ).7 - +T 1001 - T00-1

One more step will produce

19 1e 7- ' 1250 + 4.113527 970929 849525

which leads to

250 +
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----- ... . . .

Unscrambling,

•- 176180
e --64813 (error * 2.3 x i0-9).

It should be apparent that any mathematical constant can be approximated with

arbitrary accuracy by an easily-found rational fraction.

Some of the common ones are listed:

3.141592 653589 793238 46 .... e 2.718281 828459 045235 36 ....

355 193 2.80 - I0-5

312689 49171 77 0

S99532 2.90 x 10' e 18089 -?. 10-10

=2 9.869604 401089 358618 83 . = 1.648721 270700 128146 85....

2 -7 + 3.92 x I0"- e- = 1 + 7.26 x 10-5

W2 = 98548 _ 5.52 x 10-9 = 34361 + 1.28 8 10-10

v/180 = 0.017453 292519 943295 77 .... e2 z 7.389056 098930 650227 23....

180/n = 57.295779 513082 320876 80 .... e2 = 2431 - 1.65 x 10-6
329

180• - 4068 487 x 10-6

71 e2 176761 5.77 x 10-11

23922
180/W =829471

14477 + 7.52 x 10

Ine.O = 2.302585092994045684 018..

1.772453 850905 516027 30 .... ln 175 - 46 1
29676

S= 1-6 1.24 x 10-6
167 nelO = 53443 + 3.62 x 10"t0

S8545 + 3.16 x
4821

Euler's constant

/TT- = 2.506628 274631 000502 42 y = 0.577215 664901 532860 6065 ....

945 -302 1- 228 x
Z• = 2-4- - 3.025 x 10-6 y = L2- + 4.75 x 10-7

32877 33841

221987 + 1.492 x 10-11 Y z 38 41 + 3.15 - 10-11
88560 5828
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ln 2 = 0.693147 180559 945309 4172 .... In 3 = 1.098612-288668 109691 395...s

lne2 n=3 .4 6x1 l = Le + 2.07 x 10-5
88 6 71

25469 24621
In .79 x 10-11 1n+ 5.98 x 10-11

III. POWER SERIES. Power series are and will remain most useful tools.
Whenever great accuracy is required, a properly chosen power series will deliver
all the precision of which the computer is capable. Let us look at a familiar
Maclaurin expansion:* (1)

Q I LS L7 L9

This series converges quite rapidly, providing the value of a is not too

large. But we note that if 0 exceeds I, we need merely compute cos (o -4 ).4 2

Hence ! will be the largest value of the argument employed. The general term4
can be written

2n
2n:(_,)n 12 (2)

Any term can be computed from its predecessor by means of a term-to-term
recurrence ratio. Thus

-2 (3)

*2n ='2+ 1 2n-2

There remains only to compare the size of the latest computed term with some

pre-established criterion. If the term is small enough, the computation is
finished. Since it is not known in advance how many terms will be required,
running time is unpredictable, making the method unsuitable for real-time
situations.

Another method employs the "nested" polynomial technique. The series is IB
truncated at an arbitrary point (e.g., after the term a) and the arithmetic

begun at the other end. We can write !

(M -- )2- -j1)0 2 + -j)e2 - 102+ B in e
19 17 15 U3

*For the sake of uniformity, throughout this paper we shall employ series I

wherever possible whose leading term is unity. The advantage when employing a
recurrence ratio is obvious.

I
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Since most computers multiply faster than they divide, it may be more efficient

to multiply both sides by 9 z 362880, yielding

(((82 - 72)02 + 3024)92 - 60480)e 2 + 362880

sin.__• 84
362880 0 (4)

In this form, the algorithm will have a fixed running time (which is very
fast), but the error will be a function of the argument. The maximum error,
however, can be closely estimated. In this case (for sin 8) it is given by

I Cl < L (L)11 = 1.757 x
Ii 4

IV. RESTRICTING THE RANGE OF THE ARGUMENT. Supposing that, in the pre-
0

vious example, we had computed sin 3 , then recovered the wanted value by means

of the identity sin 3 * 3 sin * - 4 sin3 * , or, in handier form:

sin 3 _ -3- 4 sin2  * (5)
sin

The errors will be as -9:1, hence (for sin 3 *)

I CI < -2 (-!)1 = o.89 x 10- 1

This is a dramatic reduction in the maximum error. If preferred, the series
can be truncated one more term, simplifying the nested polynomial to

((42 - 62)02 - 840)02 + 5040 - 5n40 8in_ _ (6)

Maximum error is now < ( < 1.433 x 1010

We can carry the process another step, using the identity
sin 5 5 sin -20 sin3  + 16 sin or

sin 5 5 - 4 sin 2 (5 - 4 sin 2) (7)sin €":

The errors will be as 25:1, hence

let < (2 ) 7 1.17 x10-6
17 20

for the extremely simple expression

(62 - 20)62 + 120 - 120 sin e (8)
0
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a When faced with a very slowly converging series, some such technique is
virtually mandatory. The series for logarithms and for the inverse trigono-
metric functions offer typical examples. Let us look at

arctan z z- - ÷ - ..... (9)

For values of z > 1, we employ the identity

arctan z - arctan z

but this alone is insufficient. Clearly, if we summed a billion terms, the

maximum error would still be

I0 < (2,000,000,00l) = 5 x10

An additional step is required. We offer two choices.

The first method does not involve square roots. (Some computers perform
square root awkwardly or slowly.) The identity

arctan i = arctan + arctan - (10)a 1 + arcs I + a +

is employed. This requires summing two series, but the worst-case argument

cannot exceed-!. For arct0n z

le < - (4)29 = 0.64 x 10-10

after only fourteen terms. If desired, the identity can be employed a second
time, resulting in

11 arctan + _ _ +ca n + a + n+ sr'tan 3 + 3a + a2 (11)

Three series must now be summed, but after only nine terms each, the maximum
error is given by

2• < ( = 0.9 X 10-10
S< 19 3

In the second method, the identity

arctan x = 2 arctan x (12)
18+ 7-x
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is employed. The argument does not now exceed 0.4142..., and
1+ F

after 11 terms, maximum error is Ile < 1.36 x 10-10. Obviously, the iden-
tity can be applied a second time, yielding

arctan x = 4 arctan -X- (13)
1+ u + ý2(u + U)

where u2 =1 + xZ. The argument now is no greater than 0.1989..., and after
only six terms, Ili < 2.35 - 10-10.

The identity can be applied, of course, as many times as desired. One more
application yields, after only four terms,

lIe < 7.75 x 10-10

Of all, the tools that can be used to increase the accuracy of an approxi-
mation, restricting the argument rarge is perhaps the most important, and
should be given the highest priority.

V. PADE APPROXIMATIONS. Just as the ratio of two integers can be used to
approximate an irrational number, so can the ratio of two polynomials be used
to approximate a transcendental function. If the function can be expanded in
a power series, there is available a particularly easy method (called a Padd
approximation) for obtaining ouch an approximation. The expression will look 4
like

+ a x + a x 2 + a X5
--+ b x + b x2 + b 3 1 + e x + c x 2 + c X3 + C X4 + (14)

1 2 3

It is easy to see that we can multiply the coefficients of the rational func-
tion by any arbitrary constant without changing its value. Thus although the
function may be unique, its coefficients never are. Herein lies a second
advantage of the Padd. In many cases the coefficients can be reduced to small
integers. In this form, the Ped6 is very economical of both running time and
storage space, qualities which cannot lightly be ignored.

There is no restriction on the degree of polynomial used in either numera-
tor or denominator. However, the better approximations occur when the degrees
of numerator and denominator do not greatly differ, and are significantly more
accurate than the truncated power series from which they have been derived.
The Pad6 is much better behaved in the region of maximum error (the slope of
the Padd error curve is less steep).

A word of caution is necessary. All polynomials have zeroes. All poly-
nomials of odd degree have at leant anti real zero. Zeroes in the denominator
usually produce poles in the rational function. If such a pole is fictitious
(i.e., there is no corresponding pole in the function being approximated), the
approximation will "blow up" as the argument approaches the pole. For real
values of the argument, complex poles usually cause no difficulty, nor do real
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poles which lie well outside the argument range being used. (We have found an
additional reason for restricting the argument range.)

It will be found that if a power series is truncated after that term whose
exponent is equal to the sum of the degrees of the corresponding Padd numera-
tor and denominator, it provides just enough known coefficients to enable us
to compute the unknown ones (in the Pedd expression).

The basic form for computation is written

l4- ex 4-~ *nxn 2 nc m (15)
l'bx+.. bxm' : l + Cz + ""+ cn.,m (

1 + x+ +bm

in which the c 's are known, the a 's and b's unknown. Both sides are
multiplied by t~e Pad6 denominator, yielding

I nl+ a IX+1x + axnX

(1 + bI x + ... + b xm)(l + c x + c 2X2 +"' + C xnM ) (16)(1+bx+• 4 m 1 2 n.,m

The indicated multiplication is performed on the right. Like terms are col-
lected, dropping all terms of degree greater than m + n. These terms will be
small, but dropping them explains why the Padd and power series approximations
yield different results.

The coefficients of terms of like degree are now equated (after supplying
the left side with m terms equal to zero). This gives rise to a system of
m + n simultaneous linear equations in m + n unknowns. Now it is seen why
the higher degree terms are dropped. Retaining them would lead to additional
equations which might be (indeed usually are) inconsistent.

The required set of simultaneous linear equations can be written directly
by means of the following algorithm:

Step 1. Imagining a checkerboard enter the known coefficients --- the
coefficients of the given power series --- along the principal diagonal.
co = I is a known coefficient.

Step 2. Below cn~ draw a horizontal line. No terms will be entered
below this line. n

18
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b C

b, ,C 2

bi C3

b1  Cm~n

Step 3. Enter the first unknown coefficient (b,) everywhere along the
next diagonal.

I"

Stop 4. Repeat step 3 for each successive coefficient of the Padd
denominator.

Step 5. When all the b,'s have been entered, there will remain at the
lower left corner an empty n x n triangular pattern. Fill it up with
zeroes.

Step 6. Multiply each b1 by the known coefficient at the head of the
column.
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IlC

c 1 bl C2

bm c 2 b1  C3

0 Ciba c 3 b,

o 0 c2 bM cmn

Step 7. Each horizontal row represents the right side of one of the
required equations. Add + signs between appropriate terms. Place an
sign to the left of each expression.

Step 8. Arrange the coefficients of the Padd numerator (the a 'a) in a
vertical column, supplying nm zeroes at the bottom. Each element &comes the
left side of the appropriate equation. The complete set of equations can now be
written.

I

a 2  b2 + cb 1 + C2

a8= b3 + c 1 b 2 + c 2 bI + C3

+------------ - c* (17)0 0 + --- + cnbM +cm+(
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Step 9. Those equatiots -Aioso left member is zero form a set of m aqua-
tions in m unknowns, and can be volved for the b 's.

Step 10. The Si'a are found by direct substitution.

Step 11. Hultiplying all the Pad6 coefficients by their L.C.D. converts
them to integers.

Let us illustrate '5y example. Suppose it is required to write a routine
" for arctan z. Let us arbitrarily decide to write a Padd of the form

arctan Z Z b +x + bx'

using the transformation x to restrict the range of the argu-

ment.

Under this transformation

arctan z = 2 arctan x

so we already know that k = 2.

Note that for an even function, we can mentally make the substitution w
x2 and derive the Pad6 expression as though it were a function of w.

The appropriate power series is

arctan x (4 96Z I L (9 )

We require a rational function such that

1 + ax2  arctan x
i + bx2 + b4x4" x

Immediately we write the known coefficients as a diagonal, then add the
b's.

b -
2

b b2
4 2

0b b 1
4 2
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Next we multiply by the known coefficient at the head of each columnt

b2  -

2-b1 1

0 -jb 1 b7

After adding the column of a's (and zeroes) to the left and supplying

the needed and + signs, we have tVe required set of equations:

1 1

2 2

0 b4 -o b2 +
4 2

o - 3- b4  S 2b2 - 4

Those equations whose left member is zero form a set which con be solved
for the b's. Thus, after multiplying the last equation by 3, we find

0 b 1 b +2
4 1

0 - b + b2 b

Adding,

0 4 b2 8

from which

b B * 5 -6 I
b =.._IS L = I_"

2 J5 4 7

0 -b . +2 or b S
4 7 5 4 T
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and

2 7 321

"The required rational function is thus

X1 +

+e fixz -2~x4i

Multiplying numerator and denominator by 105 (the L.C.D.) converts all the
coefficients to integers:

105 + 55x 2

105 + 90x7 + 9xA

The con-.ete approximation is

arctan z A -(2104÷110x
2 )

105 + 90x2 + 9x4

where x is given by

z
I J1 + z2

The maximum error occurs when x V2 - 1 where, of course z = 1 and

arctan z -
4

( 0.78539 81634)

The Pad4 approximation yields (at z z 1)

arctan z - 0.78539 52528 427

in error by - 2.91 x 10-6

The truncated power series from which the Padd was derived yields

arctan z - 0.78532 81810 156

in error by - 7.00 x 10.5

The Padd is noticeably better, as it often is when the power series
converges slowly --- another plus for the Padd. It works best when needed
most.
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The algorithm for computing Padd coefficients also can be used to develop
a reciprocal power series whenever one is required. Since all the ai's are
zero (except a = 1, of course), the left sides of all pertinent equations
become zero, eliminsting the need for a simultaneous set. The bile can be
determined in order, for any arbitrarily large number of them.

After truncation, both the original power series and the reciprocal series
can be thought of as limiting-case Pads approximations.

Suppose that a function is expressible in power series form and that the
-Pdd algorithm has been used to develop the reciprocal series. We can write

21
f(x) = 1 + gjx g2x "'" 1 + hlx + h2 xZ +.

The latter can be written

1i
f(x) = 1 + hlx(l + klx + k-X2 + "")

and the process repeated upon the interior series, yielding

f(x) -
hix

1+1+ Z1X + Z2 x2 +

Continuing in this manner develops the function in continued fraction form,
and emphasizes the close relationship between Padd approximations and
continued fractions.

If a continued fraction is terminated at some nth convergent, it becomes
an approximation to the function. It is easy to evaluate by a process of
"nested division" not unlike the evaluation of polynomials by "nested
multiplication."

Use of the continued fraction technique often results in a program of sig-
nificantly fewer instructions. However, so many divisions must be performed
that running time may be quite slow. There are some models of computers which

divide quite rapidly (usually in single precision only). For them, the use of
continued fraction approximations seems attractive.

If a terminated continued fraction is "unscrambled," it will be found that
the resulting rational function is a member of the set of Padd approximations.

VI. DEVELOPING A POWER SERIES WHICH CONVERGES MORE RAPIDLY. Let us con-
tinue to use as an example the series for arctan x. Repeating for convenience

arctan x I - Jx2 * - Ix6 + x -I "" (9)
x 3 5 7 9
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a series which converges very slowly. Since this series (as the right side is
stated) is an even function of x, we mentally make the substitution w a X-
and treat it as an expanuion in w.

Now if the ratio of two successive coefficients approaches some definite
limit t (* 0) as the exponent of w increases without bound, multiplying by
(I - w/L)n will produce a new series which converges more rapidly (n is a
positive Integer). It will be necessary to include enough terms to accommo-
date the multiplier. Thus, since in the present case I -1,

2 _ 22 2 • . 6 2 a
S* Xarotanx 1 +x x x a-?x - .-9 x ÷ (18)

and
____l __÷ 52)2. 2 8x4 8x 6  8xe 19

+ x 2)2 arctan x + 1 + 2 + 8X4 3857+579 (19)

Using the series for 1 +-x2 arctan x, let us develop a Padd expression
x

which has one less term in the denominator than did our previous effort. The
work layout is so simple, we could almost do it in the head.

1y
l~l

2 b

0 :0 1b-

3 1 3

from which b = and a z "" The required expression is

1 +T•
(1 ÷ xZ) arcten x 1

Dividing both sides by I + x2,
Q•2

arctan x 14 -

X 1 + !x2 + !xI

For purposes of comparison, let us multiply by the same integer as before.
Thus

arctan x 105 + 91x2
x 105 + 126x2 + 21x4
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Since we used fewer terms of the power series to develop this expression, we
expect less accuracy, and indeed at z = 1,

aretan z a 0.78530 37156 499

in error by -9.445 x 10

VII. OPTIMIZING A PADE APPROXIMATION FOR A STATED VARIABLE RANGE. Once
the decision has been made which sets the range over which the argument will
be allowed to vary, the Pad6 approximation can be "optimized" for that
specific range. If the range restrictions change, so must the optimizing
coefficients.

Let us continue with the example, arctan z.

Arranging the Padd coefficients in matrix form, and labeling them primary
end secondary according to the order in which they were developed, we find

P 105 55
105 90

and
(105 91

1\05 126 21)

Let us produce whet we shall call the "delta matrix" by performing the

subtraction

S. -

(0 36 a
3 6 12)

If the work has been performed correctly, the first column will be zeroes and
the second constant. If desired, the delta matrix can be reduced to lowest
terms.

It turns out that any multiple of A, when added to P, produces a linear
combination of P and S, which will define another Padd-like approximation.
Its error curve will be a linear combination of two monotonic error curves
which are not congruent, and hence the combination error curve will not be
monotonic, but will have two zeroes. One will be at the origin. The other
can be positioned arbitrarily. By choosing that point near the maximum
allowable value of the argument, the approximation can be markedly improved.

To return to the example, the maximum errors of P and S suggest the
form

36 105 89 8)

P. 315 162
(315 267 26
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The full expression is

arcan = x(630 + 324x2)

arotan z
315 + 267xz + 26x4

where

i! ~X -... z•

1 + /l +Z

When z 1, x = - - 1, arctan z = w/4. The approximation yields 0.78539
79371 287, in error by -2.2627 x 10-7. This is an order of magnitude
improvement.

Let us define relative error as follows:

error appro;4imation _ 1 (20)
relative etrue value

Graphing the relative error of the approximation P', we see that it
varies from +2.814 x 10-7 at z = 0.77 to -2.881 x 10-7 at z = 1.00,
leaving virtually no room for improvement. For all practical purposes, then,
P' optimizes P. (See Fig. 1)

Supposing that we apply the transformation a second time, add a term to
the numerator, and optimize. How much accuracy would be gained?

arctan z w 4x a+ a X2  b+ X )

where vZ =1 + zZ and x z

1 + v + V2(v2 + v)

1=1

a =b 1
2 2

a b I b 1
4 43 2 +

1 01~b 1
0=0 .0b + b34 5 - 7

0 0 + 0 + .1b ,1 bz +
5 4 7 2 9

The basic approximation then computes to be

arctan z - 4x* ( 945 + 735x 2 + 64x4

945 + 1050x 2 + 225x'"
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"When r t 1, x- 0.1989 " " r.e. 1.3 x 10-10

The second form is derived from
S~1=1

a2 :b
el:O =bb÷-A

2. 2
: - 4 r 0 + T b " 1 "

0=0 + 0 b 2
15 3

from which

323 16
b 7 a 2 71 10-5

23" 2 16 4
2 10 5 reduces to arctan z 4 Jx2945 + 1350 ----- x '

x + 1x 
(

yielding

0' 300 180)

P - 0.007375A is virtually optimum, giving

( 945 + 732.7875x 2 + 63.41x 4

arctan z = 4xk9 4 5 + 1047.7875x 2 + 223.6725x41

r.e. is within + 8.1 x 10-12

Multiplying through by 400 obviously recovers integer coefficients.

The relative error curves for these two "optimized" approximations are
plotted in Figure 1. The form of the error curve near the maximum argument is
typical.

The approximation P - 0.0074A is close to optimum and yields smaller
coefficients, viz.,

r4(1575 + 1221.3x2 + 105.68,c,\
r\tan z75 + 746.3X7 + 372.78x4

Multiplying by 50 recovers integers.

Additional Padd approximations are given in the appendices.
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VIII. THE USE OF TSCHEBYCHEV POLYNOMIALS. Let tis introduce the following
shorthand notation:

To a cos (0) 1

T: = cos 0

T2 = cos 2e 2 cos 2 0 - 1

T3 coB 3 a 4 os 09-3 3 coso

Tn = cOs no (21)

Recalling that

cos (no + 6) cos e cos ne - sin 6 sin no

and

cos (no - 6) cos 6 cos no + sin 6 sin nO

we obtain by simple addition

cos (no - 0) + coB (nO + e) = 2 cos 0 cos nO (22)

which, stated in the shorthand, becomes

Tn-t + Tn+1 = 2TITn (23)

This trigonometric identity --- sometimes called a three-term recurrence
relation --- enables us to compute any Tn+l from the previous two. The
result will be an expression in the various powers of cos e.

Further to simplify, let us make the parametric substitution x.= cos e.
This results in

To0=I

T1  x

T2 = 2xZ - I

T3 = 4x 3 -x

T4 =8X4- 8x 2 + 1 (24)

etc.
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We have just generated the set of Techebychev polynomials.

Since any T. can be expressed an the cosine of some angle, it can assume
only values between the limits -1 and 1. Thus each Tn can be said to be
an equal ripple function, with known extreme.

It should be apparent that any analytic function can be expressed as a
series in the TI's, this being merely a special case of a Fourier series.

Turning our attention to the parameter x = cos e, it is seen that it,
too, is subject to the constraint - 1 4 x 4 1. For values of the argument
outside these limits a Tschebychev series will not converge. Sometimes this
difficulty can be overcome by a suitable transformation of variables. For
example, suppose it is desired to expand lnez in a Tschebychev series. The
argument is very badly behaved (0 < z < .), but the transformation

~~ z z l
Z +1

suggests itself. Solving for z,

1Z-xl.xI•~~ x1+X

Hence In(•(-+ x- can be expanded in a Tschebychev series in the variable x.
lx

Theoretically, the number of these transformations is endless, hence there
is no unique Tschebychev series for any mathematical function. Thus when
stating a Tschebychev expansion, it is necessary to state also the transfor-
mation used.

It is useful to be able to express the various powers of x in terms of
the Tschebychev polynomials. This is easily done by what I call "half" a
binomial expansion. When there is an even number of terms in the quasi-
binomial expansion, no manipulation is necessary. But when there is an odd
number, the middle term must be halved. This always happens to the term
involving To, so that it is convenient to use TO/2 and then employ the
binomial coefficients. To illustrate:

SI = To

x = T1

x2 (T2 + 2-ý) = i(T 2 + TO)

x3 a 1(T 3 + 3 TI)

x-4 ! T z ) 16+'(T + 4T+T 2  3TO)
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xb, -!(T 5T IT

xn (T + nT + n(n-1) T + (25)
2n I n n- 2 n-4

As a check, the sum of the interior coefficients must equal the exterior
denominator.

If a given function can be expressed as a power series, and if the
* argument behaves properly (i.e., its absolute value does not exceed unity),

direct substitut.ion of the various expressions for xn, followed by a
collection of terms, results in a Tschebychev series, in which the function is
expanded in terms of the successive Tschebychev polynomials, rather then in
ascending powers of the argument.

Tschebychev series have two extremely useful properties, which doubtless
are responsible for the considerable popularity of the method. They are:

1. A Tschebychev series will converge more rapidly than any other series
(given the same function and argument). Thus, the desired accuracy often can
be attained with fewer terms.

2. Each Tschebychev polynomial is an equal ripple function (between the
argument limits -1 and +1). There will be n + I of these extreme,
interlaced by n zeroes. The value of these extreme, of course, is + 1,
since Tn(x) = cos nx. It has been proven that, of all polynomials of-like
degree whose highest-degree terms have the same coefficient, the Tschebychev
polynomial has the smallest extreme. In other words the maximum (extremum) is
minimized. Hence the term "minimax." Thus, when an approximation is computed
from a truncated Tschebychev series, the error is closely given by the
coefficient of the first neglected Tschebychev term (see Fig. 2).

A Tschebychev series is essentially a Fourier cosine series, and the
coefficients of course can be computed by evaluating the pertinent definite
integrals. This can be laborious. Since usually we will be dealing with
well-behaved analytic functions, it normally will be better to expand the
function in a power series and then develop the Tschebychev series by direct
substitution and collection of terms, in the manner already seen. It will be
observed that each Tschebychev coefficient is itself the 'um of an infinite
series. These latter series are easily summed by a programmable calculator,
since they involve nothing more complicated than powers of a constant, facto-
rials, and binomial coefficients.

When the function being approximated has a zero in the range (-1, 1), a
Tschebychev approximation may behave very badly near this zero. Simply
stated, the error in the approximation may exceed the value of the function.
Often, this is less a fault than a result of clumsy handling. In most cases,
the zero can be removed by altering the function slightly. We shall
illustrate by example.

20
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We wish to develop a Tschebychev series for sin e. Now

83 Ob 07
sin 6 = - -C12 l• 17~

it + 7

Letting the argument very from -2 to !, we see that the proper transforma-4 4

tion is 6 =.!x. Direct substitution yields a series in those Tschebychev

polynomials of odd subscript. Truncation, however, produces an approximation
which is of little use when sin 0 is very small. The problem is very easily
corrected. Noticing that e factots the right side,

Ssin e OZ 04 06S--•-- - F3-• + T5- iT+. .. (1

sIn eThe function sin - contains no zero within the chosen argument range. In

fact, sin > 0.9.

sin e 92 84 6

x - + 5 -÷7 +

does virtually as well and leads to some simplification. It is obvious that,
in the last two cases, the two Tschebychev series will involve only those
polynomials of even subscript.

It is instructive to show the complete derivation of a Tschebychev series
for sin e. From the last equation, we have

ir

sin I x 2_- 4 - +
x 4 4 " 13 4• 15 4• 1 "I+"

Repeating for convenience

x2 = !(t T TO)

x4 • j (T: + 4T2 + :TO);,]

x '-(T + 6T + 15T2

xe:z,-(To + 8T6 + 28T• + 56Tz + 35TO)

lO TT1 (T1o + lOTe + 45T 6 + 120T 4 + 210T2 + 126TO)

1l -' (T,2 + 12Tlo + 66Ts + 220T6 + 495T4 + 792T• + 4,62To)

X14 2 -L-•(T,4 + 14T2 + 91TIo + 364Ts + 1001T6 + 2002T• + 3O003T2 + 1716TO)
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y- 76(T 1 6 + 16T 1 • + 120T1 2 + .560T10 + 1820Te + 4368T6 + 8008T4

+ 11440TZ + 6435T0) (25)

etc.

To shorten the notation, set p a -. Then

s ox p - p + p5ý - p74 + . (26)

The desired Tschebychev series is

sin nx = soTo + 82T2 s*T4 + " (27)
x

Substituting and collecting similar terms,

Spj 1 p5 1 p

so = p - IT•p +3"fP -" T'MtP +

The general term *r, is given by

1 n 2nD 12zn.1 Zn•-i)' 12. C(2r,, n) (28)
2 2n-1 12n *1

The term-to-term recurrence ratio is

1 2n - 1
€2r.÷1 - 4 2n + I n 2n-1 (29)

0.785398 163397 448309 62
-0.040372 756094 140390 85

0.000933 897963 822270 06
-0.000011 430063 806930 39

0.000000 085684 836846 28
-0.000000 000432 447669 64
0.000000 000001 567473 35

-0.000000 000000 004275 39
0.000000 000000 000009 09

-0.000000 000000 000000 02
so 0.745947 960457 275642 10

In a like fashlorn,

1j 1 9 1 7 1 9

a 2 2 - T27 P + 246 P Td7 P + 1 = P 2
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The general term i, is given by

2n+1 2 2n-I 12n+1

Note the absence of the leading factor - That factor applies only to T0.

The term-to-term recurrence ratio is

•n+1 2n + 1 n! 1 2n-1

-0.0*0372 756094 140390 85

0.001245 19728M 096360 08

-0.000017 145095 710395 59

0.000000 137095 738954 04

-0.000000 000720 746116 06

0.000000 000002 687097 16

-0.000000 000000 007481 94

0.000000 000000 000016 16

-0.000000 000000 000000 03

82 -0.039144 567527 081957 02

Continuing

1 p 1 p 1 9I ~A960~ 26880 i 658680

The general term 'n is given by

. C(2n, n 2)

2n1 - z2n-1 12n +-I

The term-to-term recurrence ratio is

2240 1 2n - I2n+ 2- -- + - -4

!0.00031.1.299321 274090 02

-0.000006 858038 284158 23
:0.000000 068I47 86947702

i-0.000000 000411 8.54923 46

,.0.000000 000001 67943.5 73

S-0.000000 000000 004987 96

0.000000 000000 000011 31

-0.000000 000000 0000n0 02..

84 0.000304 509420 678944 41
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For any coefficient 02k (k 1 1, 2, 3, ... )

n- 212n ÷"' C(2n, n- k) (30)

The first term is obtained by setting ni k. The term-to-term recurrence
ratio is

1 2n - 1 2
2n+l -" 2n + 1 &n -k n-I (31)

To complete the example, the rest of the calculations follow:

-0.000001 143006 380693 04
0.000000 019585 105564 86

-0.000000 000154 445596 30
0.000000 000000 746415 88

-0.000000 000000 002493 98
0.000000 000000 000006 17

-0.000000 000000 000000 01
a6  -0.000001 123574 976796 42

0.000000 002448 138195 61
-0.000000 000034 321243 62
0.000000 000000 223924 76

-0.000000 000000 000906 90
0.000000 000000 000002 57

-0.000000 000000 000000 01
ae 0.000000 002414 039972 41

-0.000000 000003 432124 36
0.000000 000000 040713 59

-0.000000 000000 000226 73
0.000000 000000 000000 79

alo -0.000000 000003 391636 71

0.000000 000000 003392 80
-0.000000 000000 000034 88
0.000000 000000 000000 17II

812 0.000000 000000 003358 09

-0.000000 000000 000002 49
n.000000 000000 000000 02

a 14  -0.000000 000000 000002 47

816 " 1.4 x 10-21
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As a simple yet powerful check on the calculations, the sum of the coeffi-
cients should equal the value of the function at x z 1. (When x 1, every
Tschebychev polynomial also equals unity.) In the present instance

sin__p ox= 1r2
x

When employing a Tschebychev series in the basic form, the values of the
successive Tschebychev polynomials corresponding to the stated value of the

* argument are easily obtained by repeatedly applying the proper trigonometric
identity (three-term recurrence relationship).

When a Tschebychev series has been truncated for use, the maximum error in
the approximation is given (nearly) by the first neglected coefficient. The
equal ripple feature distributes this maximum error (small though it be)
throughout the argument range. It is obvious, then, that restricting the
range of the argument will not reduce the maximum error. Again, this may be
less a fault than a faux pas.

Consider what happens when the principles of range restriction are applied
before selecting a transformation.

Continuing to use the sine function as a& example, suppose we let 8 e •.

Computing sin *, we recover the wanted function by means of the identity

sin 50 5 - 4 sin2 0(5 - 4 sin2 0) (7)sin 5!

But -l need not exceed 9 degrees. Hence we can develop a Tschebychev
series for the transformation

P =-To

All formulae remain the same. It is only rtcessary to substitute the new
value of p.

0.157079 632679 489661 92
-0.000322 982048 753123 13

0.000000 298847 348423 13
-0.000000 000146 304816 73
0.000000 000000 043870 64

-0.000000 000000 000008 86
so 0.156756 949331 824006 98

-0.000322 982048 753123 13
0.000000 398463 131230 84

-0.000000 000219 457225 09
0.000000 000000 070193 02

-0.000000 000000 000014 76
a2 -0.000322 583805 008939 13
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0.000000 099615 782807 71
-0.000000 000087 782890 04
0.000000 000000 035096 51

-0.000000 000000 000008 43

84 0.000000 099528 035005 75

-0.000000 000014 630481 67
0.000000 000000 010027 57

-o.oo0oo0 000000 o00003 16
a' -0.000000 000014 620457 26

0.000000 000000 001253 45
-0.000000 000000 000000 70

as 0.000000 000000 001252 74

- - 7.0 x 10-20

The resulting economy is obvious.

A Tschebychev series is rarely encountered in its basic form. The compu-
tational power and efficiency of a simple polynomial in nested form is so
great that one cannot gainsay its use. Hence most Tschebychev series, after
truncation, are converted to this form by substituting for the Tn's and
collecting terms.

We illustrate, using

1sin L- = soT0 + a 2T2 + a&4 4

x

Thus

•xsin
x "a0 ÷ a2(2x 2 

- 1) + a4(8x• - 8x2 ÷ 1)

(o - a 2 + a,) + (202 - 8a4) x2 + 8a8x4

Simplifying,

sinL- = x(0.157079 632665 - 0.000645 963834 x2 + 0.000000 796224 x4 )

Maximum error occurs at x = I and is less than 1.5 K 10-11, exactly as

predicted by a6 . The error of this approximation to 1 sin I is shown in
x

Figure 2.

Note that when a Tschebychev approximation has been reconverted to a Sim-
ple polynomial form, there is no practical way to estimate the maximum error
by inspecting the resulting coefficients.
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IX. MAEHLY'S METHOD. A method attributed to Meehly develops a rational
function approximation from a Tachebychev series in much the same way that a
Padd approximation is developed from a simple power series. The basic form is
like

I Yo + Y1T1 + YZT2 + ... (

Since the coefficients of a rational function are not unique, we can arbi-

trarily choose any one of them, and so set - 0  1.

As before, both sides are multiplied by the lMehly denominator and like
terms collected on the right. The multiplication requires use of the trigono-[ metric identity

r TnTm Z Tn-m + Tn+m) (m 4 n) (33)

It will be noticed that this uses terms of the basic Tschebychev series out to
a degree equal to the sum of the degree of the Maehly numerator and twice the
degree of the denominator.

"The computations, if systematized, are less complicated than at first

appears. If we designate the product-series as

40 To + 41T, + C2 Tz + 43T3 + .... (34)

then

40 Y•0 + 2(6i1I + 62Y2 + 03Y3 + 04 +.

C, =J + j8 1 ( 2Yo + Yz) ÷ j02(y + Y) + .j-B(Yz + YA)
1 1
2 (640 + 'YO + _jO5(4 + Y6) + ..

0 + 'r,)(Y + YS

C2 - Y2 + 2BI(YI + Y3) 12 - 2 (2Y 0 + Y 4 ) + 2 + y)

+ 424 (Y2 + r6 ) + 265(Y3 + Y7) +

;3 - Y3 + .'10(Y 2 + Y4 ) + -1020 + Y 5) + .B,3(2Y 0 + Y)

+ -2* 4(*Yl + YI7 ) + j0 2+ 'rS) +

¾1 4 + 4 1 (Y 3 + Y5) + '122 (y 2 + 61) + -21 3(Y 1 + YI)

+ j,(2YO + Y+) + .+ ... (35)

etc.
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Within each set of parentheses, the subscripts of the are given by
the sum and difference of the C and $- subscripts. (If a negative value
occurs, simply use the absolute value.) *hen the subscripts of ci and 0
are equal, the coefficient yo will appear and must be doubled.

Since any reasonable approximation will contain a finite number of 189
each of the expressions for C. will terminate. Notice that within eachlset
of parentheses the subscripts are either odd or even in pairs. This means
that for odd or even functions, half the parenthetical terms will vanish.

It is now possible to develop a set of m + n + I simultaneous linear
equations in the same number of unknowns (the a 's and $.'a). That the
technique is adapted from the Padb method is obvious. The wanted equations
are:

t o,0 =r0

a3, '2 =2

0
0=€

for the example form given.

Exactly as with the Psd6, those equations whose left member is zero are
solved for the 0,'a, after which the a's are found by direct substitution.

The error curve of a Maehly strongly resembles that of a Tschebychev
approximation. In fact, it is usually possible to select a Maehly and a
Techebychev so that the error curves have the same number of ripples,
similarly spaced. Under these conditions, a linear combination of the two

* approximations can achieve fantastic accuracy.

Let us illustrate the method, using the Tschebychev series for sin px

p = j-•. The Tschebychev coefficients, previously computed, are repeated for

convenience:

YO Z 0.156756 949331 824007

Y2 = -0.000322 583805 008939

Yz = 0.000000 099528 035006

Y6 = -0.000000 000014 620457

'Ye 2 0.000000 000000 001253
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We choose to develop a teehly of the form

sin x M
x 1+÷ 2 TZ

The required equations are:

:- + + 1  (2y + Y)
2 2 2 2 2 0 4

4 4 2 2 2 6

The last equation yields 02  immediataly.

02 :0.000617 067744 563840

(so = 0.156756 849803 793512

2 = -0.000225 854117 132272

Now a and a are coefficients or T = 2xZ - 1.

Hence

H : (%O - a2 ) + 2ci x 2

(1 - B 2 ) + 20Bx2

The coefficients of a rational function are never unique. This allows us
arbitrarily to set any one of them. Let us choose unity as the coefficient of
x2  in the denominator. Thus, dividing through by 20 2 ,

127.200542 6502 - 0.366011 8668 x 2

809.783804 9871 + x2

If desired, a partial division will produce a form more suitable for
subsequent linear combination. Thus

M - 0.157079 632695 59 - 0.523091 4995 x2

809.783804 9871 + x7

or, better still,

423.591024 8211
S-0.366011 866803 8d + 09.783804 9871 + x7

We wish to compare this approximation to the Tachebychev approximation

T = y + Y2 T2 + Y T4

213



which, expressed in terms of x, is

ST (Y0 -'2 + YO) + (2y2 - 8y 4 )x + 8Y4x4

10 -2 + Y4 = 0.157079 632664 87

ZY - 8Y = -0.000645 963834 298

8YI 0.000000 796224 2800

An inspection of the error plot~s (figure 3) suggests the linear combina-
tion 0.524 T + 0.476 M. Performing the multiplication and combining the
resulting constant terms, we get

Ain. * - 0.091911 921082 257
x

- 0.000338 485049 17211 x 2

+ 0.000000 417221 522744 10 X 4

201.629327 81484
809.783804 98711 + x'

an approximation so accurate that a thirteen-digit calculator could detect no
error.

Unfortunately, the functions which are encountered in real life rarely are
as well-behaved as is the common sine. But even though at first glance they
may look solution-proof, sometimes a little guile will go a long way. For an
example, let us return to that recalcitrant function, the inverse tangent.
Previously, we have seen that if z = tan 8,

ai :l-jtan z 1 z + IZ -_ z + " (9)

We can restrict our interest to 101 4 1, whence izi 4 1, but z is not a

suitable Tschebychev variable. It Is easy to see that the ratio of successive
coefficients of the Maclaurin series tends toward the limit -I, making it
useless for computing Tschebychev coefficients. Moreover, the Tachebychev
series (for the transformation x = z) converges rather slowly, requiring a
large number of terms for any stated accuracy. Altogether, a seemingly
formidable task, with a disappointingly cumbersome solution.

Let us employ some of the tools we have acquired. First, let

Z (12)
1 +
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Then aretan z a 2 erctan y.
!1

But if iz ( 1, then t I
1+¢e-

We make the paremetric substitution y px and set x a 1 when y = r -1.

Thus, p = I - 1. This is a particularly handy transformation, since
p-I = 2 + p and - p2 = 2p - 1. The solution then, is

arctan Z a 2 arcten px

We will, however, compute the Tschebychev coefficients for

arctan Dx Z YO + Y2T2 + Y4T4 + (3)

in order to avoid a zero within the stated argument range.

Now p is a constant (-p2 . -0.17157 --. ), and hence the various
powers of p in

arctan Rx p= P _x2 + 2- x - 21 x6 ÷ (37)
x 3 5 7

become part of the coefficients. Convergence is quite rapid, and the
computations are easily made on a programmable calculator. The resulting
Tschebychev series is:

arctan Dx = Y0 + Y2T2 + y T , + " " (36)
x

Z (2 + p) p
I +÷ r1 -- =Z

YO = 0.403199 719161 511495 80

Y2 = -0.010749 968804 390963 96

Y 4 = 0.000256 378716 684566 71

y6 = -0.000007 264267 589573 12

= 0.000000 223914 266710 62

= -0.000000 007256 851307 14

Y12 = 0.000000 000243 155037 30

y4 = -0.000000 000008 343268 50

Y16 = 0.000000 000000 291421 29

YIS = -0.000000 000000 010320 90
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"tY2  - 0.000000 000000 000369 59

-22 z -0.000000 000000 000013 36

Y24 " 4.86 x 10-19 Y26 f -1.78 x 10-20

From these coefficients, let us compute the simplest possible Maehly:

M 0H:. 1 8 ÷2T 2

1 + $ T

O :2 2

2 1

Y + Is

4 0 4"

B 0.026653 173701 372558 84

a0 = 0.403056 458768 597611 48

Thus,

a ao
M n 0

-1 + a(2x2 (1 - 8a) + 28 x 2

22 2

Dividing through by 282,

arctan px 7.561134 431579
x 18.259492 044066 + x2

The relative error in this approximation does not exceed 2.9 x 10-4. Figure 4
compares this error with that of the simple Tschebychev approximation
T = YO + Y2 T2 . Also shown is the error curve for the linear combination

1.78981 H - 0.78981 T.

This error curve (for the linear combination) is shown on an expanded scale in
the lower graph, where it clearly reveals the shape of the SECOND missing
Tschebychev polynomial. It can be shown that the linear combination method
produces an approximation virtually as accsrate as the Tschebychev (or Moehly)
of next higher order.
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X. ASYMPTOTIC SERIES A LOOK AHEAD. The author presently is investi-
* gating the theory of asymptotic series. First results are very promising and
Smay warrant a future paper. Some tentative findings are:

1. To be useful, an asymptotic series must be an alternating series.

2. Provided the value of the argument is not too small, there will be a
smallest term which is not the first term. "Smallest" is taken in the sense
of the absolute value. There may be two consecutive smallest terms (equal in
absolute value but opposite in sign, of course).

3. After the smallest term, the series diverges. None of these divergent
terms stould be included in any approximation.

4. Truncation immediately after the smallest term produces an approxima-
tion which errs less than that produced by truncotion at any other point.

There is a widespread --- but mistaken --- belief that this represents the
best aporoximation of which the asymptotic series is capable. It is simply
not true, as we shall see immediately when we pursue the New Look.

5. If, in place of the first divergent term, there is substituted a term
of like sign whose absolute value is exactly half the absolute value of the
smallest term, there is a definite reduction in the error of the approxima-
tion, often by more than an order of magnitude.

6. If the remaining error is plotted as a function of the argument, it is
seen to be a "sawtooth." See [9] for an example. This function appears to
possess continuous derivatives. If so, it is a sufficient condition for the
existence of an exact analytical expression (e.g., a Fourier or Tschebychev
series).

7. Discovery of such an expression is the next logical step. (Only an
approximation was developed in t9].)

8. The composite expression should converge for all values of the argu-
ment down to include the point where the sum of the first two terms of the
asymptotic series is zero, thereby reducing the total expression at that point I
to something like f(z) j + e(z). For two commonly used asymptotic series,

this minimum value of the argument may turn out to be:

for lner(z), z = kvl - 0.289 ([2] and {8]).

for erfc z, z a ,2 0.707 (9]).

2i
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APPENDIX A

AN ALGORITHM FOR SQUARE ROOT

Before actually developing an approximation, let us address a few ancil-
lary matters.

First. The Newton-Raphson technique. If rl is any reasonable estimate

of Vz, then

j+1 - r [.r+ -L]

is a better one.

The process can be repeated endlessly and is found to converge quadratically
upon the true value. Examining the form of the iterative equation suggests
that the first estimate be in the form of a rational function approximation,
since if r 1 - N/D, then

I NzD N+ zD2
r2  +~ [ L_] = 2N2 (38)r2 2' D

thereby saving a division. In fact

S1 [N2 + zD2  2zDN
r3  2-L 2DN + N2 4 +zD 2

I [(N 2 + zD2 Z2 + 4zD2 N2

2 L 2DN(NZ + zDZ)

N" + 6zD2 N2 + z2D4

4DN (N2 + z0Z)

and still another division is saved.

2c . The bilinear transformation. Simply stated,

wz + aw + bz + c O 0

w and z are variables, a, b and c are coefficients, any of which might
be complex. Should the term in wz appear with a coefficient other then
unity, division by that coefficient will produce the above form without loss
of generality. The expression can be regarded as linear in w or as linear
in z, but is NOT linear in both together; hence, the term "bilinear." It is
easy to solve for either variable in terms of the other, viz.,

wZ + 8w =-bz - c

-bz-c (4l)z + a
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Two (or more) successive bilinear transformations can always be replaced by a
SINGLE bilinear transformation (with, of course, different coefficients). Let
us examine the bilinear tranformation

w z +1

Solving for z,

I +I
Z (42)

As z varies through the argument' range 0 to ¶ w varies from -1 to 4.1,
suggesting that a trnssvfrmation of this or a similar form (b -1, c b a)
will be useful for square roots, logarithms, or any function whose argument
must be non-negative.

Third. Catering to very large argument rjanges. Superficially, it would
seem that the bilinear transformation would be enough. But we find severe
warping near the band edges (as w + t, in the above example). This
introduces an acute scaling problem similar to that of the tangent function
near 90 degrees. Clearly, an additional device is needed.

A possible approach is to develop several approximations, each for use
with a different stated argument range. Since this method would seem to
require more perseverance than ingenuity, it will not be further pursued in
this paper.

Instead, we shall define a process and call it "normalization." Basi-
cally, it amounts to a transformation which separates a floating point udmber
into exponent and mantissa. The floating point number can be expressed to any
convenient base. The approximation is applied to the mantissa, after which a
suitable inverse transformation recovers the desired result. For the square
root, this amounts to dividing by any arbitrarily chosen perfect square, com-
puting the approximation, then multiplying by the perfect root.

A suggested algorithm follows.

Consider separately a t z <r1 and 1wi z <

Denote the latest transform by ihc
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Case 1. 1 .-z <.

S~YES
= z X 10-1

Sh* = h x 10
V8

z>5? YES JZ* z 0.04z

h* z 5h

Apply the approximating function to the "normalized"
argument, z*. Call the result f(z*).

f(z) = h*?(z*)
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Case 2. 0 z 2 < 1.

Either apply the "normalization" algorithm to the reciprocal, z , or

;! replace all the constants within the algorithm by their reciprocals (and >
by 0).

The resulting normalized argument will always lie in the range 0.2 z* 5
This suggests the bilinear transformation

i1

px a

Setting x = 1 when z* a 5, we find that p =.!. If we can find a power
3

series for the square root function, it should be easy to compute the
Tschebychev coefficients for this transformation, and hence the taehly
rational function.

Now

z* - U+ DX) - px)(4)
= -px (1-px)Z

Thus

(1 - px) 'z (1 - p2x2)1/2 (45)

and the right side can be expanded by means of the binomial theorem, yielding

"1-p2X2  .1 pZxZ- .1 p 4 x4 - -1 p6x6.-2 p8x8
2 a 16 128

7 plOxlO 21 -12x12 . p14xi . .

256 1024 2048

The general term (after the first) is

"- Zn-2 p2nx2n

22n-1 In In-i (47)

and the recurrence ratio is i2n -Žp2x2. Inserting the value p =, the
2 12n-2 x~n 4n

general term becomes - 32n In In-i and the recurrence ratio 4n--6-- x2 .
32n i in-19n

The series for computing the coefficients of the Tschebychev series require
the additional multipliers (for the general term) of

12n

22n-1 In-a in.e+

where Y is the Tschebychev coefficient being computed and 'Z is a term
2a Zn
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of the series used to compute it. Temporarily skipping over the problem ofcomputing yo, we find that the first non-zero term in the series for Y2F (a 1, 2, 3, • ) occurs when n = a. The expression for it simplifies to

-4 12n-2

, (2n - 3) (2nr-% )rThe recurrence ratio is -1•i :9(ný' - a

It is found that the second term of the series for y is identical withthe first term of that for y. The recurrence ratio is ýhe same. Only thevalue of a is different, ?herefore we compute this term, reset a to zero,
and sum the resulting series --- yielding, of course, y. - .

Thus we have the Tschebychev series

(I px) Jvz' = yo y2T2 + Y4 T4 + (48)
where

Z* - I 2px Z * + I P =

iYo = 0.877328 215244 7546

Y2 = -0.126982 320508 2891
y4 = -0.004619 211325 3075

Y6 = -0.000336 513800 0460
ye = -0.0000 0 660625 1123SyIO = -D.000n03 129636 9144

Y12 = -0.000000 042323 7095

SY14 = -0.000000 03920 0 6243

Y16 = -0.000000 004609 4341

Y = -0.000000 000065 1841

Yzo = -0.000000 000070 0800
Y22 = -0.000000 000008 8292

Y24 = -0-000000 000001 1270
Y26 = -0.000000 000000 1454

Y28 a -0.000000 000000 0189
yo a -0.000000 000000 0025

Y32 = -0.000000 24 000 00
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It seems possible that a Mashly as simple as

U - px) Vz 2= ÷ T -N
1 + 02 T2  D D

may be sufficient for our needs. Before computing the Mashly coefficients,
however, let us take notice of how the bilinear transformation we have used
simplifies the application of the Newton-Raphson technique. Of course

N
i (l - px)

Then,

r [ N (I + x) D(1-PX)]i2 Z - px) +(1 +- px) " N

r N D(1 + ox)

55( 1 - px) + 2N

which combines to

N2 + D2(1 - D2 x 2 )
2 " 2DN(l - px)

In similar fashion,

r N2 + D2 (lC-oX 2) + k ± x)(9
r3  - 4DN(l - px) N2 + D2(1 - p2x2)

which states the final solution in terms of the original Maehly approximation.
The MNehly coefficients ares

o a0 =0.881935 217627

a2 z -0.190474 825654

02 = -0.072561 319783

Since the coefficients of a rational function are not unique, neither are N
and D --- only their ratio is. Thus there are a limitless number of forms
in which they can be expressed. Perhaps the simplest is

( x) r 11.08452 - 3.93753 x2

"2 7.9072 - x2
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In final form

N N + D2 (2 X2) DWI +x)

2 9OiN ("r X) N +D(

An alternate form:

Let u x) and v + X)

Then VF + uv v
4u + uv

The relative error of this approximation at x z I (z* = 5) is less than
10-15. We use this relative error to estimate the precision with which we
must state our Maehly coefficients. Twice taking the square root (to remove
the Newton-Raphson effect), we multiply the result by the least coefficient.

3.93753 x 10"15/4 = 7 x 10-4

This result suggests inclusion of the fourth digit after the decimal point.
The fifth is shown, but is superfluous. In fact, expressing the approximation
as

(2 - x) /- 11.08 - 3.94x 2  N
2 7.39- xz - D

results in a relative error (0.2 < z* < 5) of no worse than 3 x 10-12.

It is interesting to note what happens when the Maehly rational function
is extended to

S0 + a 2 T2 + 4 T 4 N
i(i - px" 1 + 02 T2 + B0T4  - D

after which the Newton-Raphson technique is applied only once

(1•0 -0 '0 + 26•'2'Z +

012 42 Y"2 2"a 2 (2YO + Yb4) + 2$4(Y2 + Y6 )

(4 : Y4 : + .•82( y 6 ) + 6 4 ( 2y 0 ÷ YB)
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! = ý7 - ----- 7-_--

~~~ . . . . . ...... . . .. ...

o a C6 Z Y6 + ÷j 2(Y4 + Y.) + 04(y 2 + Y1)

o0 = C 8 + - 102 (Y 6 + Y1 0 ) + "2104(y4 + Y12)

Computing,

o = 0.891040 789794

*2 a -0-.316214 857627

Q4 = 0.011427 219988

02 = -0.216071 134840

84 = 0.002611 917418

Simplification results in

a 87.4847865 - 51.9623632x 2 + 6.5625467x 4

(2-x) P'i - 58.3231998 - 21.6812755x' + x"

N D(2 +x) 1u
/-• = N +O( 2 x)_ + u._v

2D(2- x) 2N 2u

At x 1 (z* = 5), this approximation errs by 10-13. To obtain that accuracy,
the coefficients must be stated to five or six decimal places (seven are
shown).

APPENDIX B

CUBE ROOT

Many of the problems involved in computing the higher roots are similar to
those of the square root and submit to similar solutions. Additionally, the
odd-numbered roots admit negative values of the argument. So saying, the
matters of "normalization" and accounting for sign are left to the reader.

To develop a power series for cube root, we umploy the transformation

p * - I* I

2~-1

I I.px: *
Solving for z*, z* - -pg:{1-p), so that

213
px) px) /

= l - iTP X - p-p

1 AX4 -4 5 X5,+
243 .... (50)
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'Let us develop a Pad4 approximation of the form

(1 a px + a + px + 2x 3+ (x

S=-- 1 + blpx + b 2 P2 x 2

With a Pad6, it is a matter of indifference whether we restrict the argument
range before or after developing the rational function. Therefore, in the
interest of convenience, set p 1. The simultaneous system of equations then
is

a, 1 31

2 1

3 2 7; 4

o 0 - tb2 - -b1 --b43
0= 0 0 0 - 2-4 7'b b

81 2 24 - 1 729

Solving,

14b 7
hl - Ts 2 45

8 2 4

tividing both sides of the expression by I - x and multiplying all
coefficients by their L.C.D. yields

405 - 648x + 270x 2 - 20x 3

405 - 783x + 441x 2 - 6=3x

It is desirable to choose an argument range (for the "normalized" variable)
the ratio of whose end points is a perfect cube (e.rj., 8). Noticing that x
passes through zero as z* passes through unity, we can see at once that

8< z! < 1 and 1 < z* < 8 will be a good choice for these end points. It
u

turns out that in the range 0.35 4 z* 4 2.8, the relative error is less than
5 x 10-4. However, we can do nearly an order of magnitude better than that.

The two term divisor enables us to use the original series as a Padd (of
which it is a special case) and write, after multiplying by 405:

( 405 -270 -45 -20•45 02 )
45 -405 0 0
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Subtracting and reducing-to loweat terms, we find

6 -5 0C) 6 -7 1

The Padd is "optimized" at P - O.86 from which

405 - 652.8x + 274x 2 - 20x0
405 - 787.8x + 4,6.6xZ - 63.ex"

Within the argument range 0.38296 < z* < 3.06853 the relative error does not
exceed 7.167 x 10-5. The ratio of these end points slightly exceeds 8 -- a
perfect cube --- so that the upper' limit of z* (for which the "normalization"
routine searches) arbitrarily can be set anywhere between 3.0637 and 3.0685
--- say 3.066.

For any odd-numbered root, there is a specialized adaptation of the
Newton-Raphson technique which converges more rapidly then any other. Before
developing it, however, let us review Newton-Raphson in simple form:

Let f(y) z z - yn (n 3 3, 5, 7, 9, ... )

f'(y) -nyn- 1

Suppose we have an estimate of the root, yl. We also know that at the
true root, 9, f(g) = 0. This enables us to write the approximation

f(y ) - 0y- f,(yl) (52)

Now 9 is the only unknown, but this is only an approximation, so we will not
recover 9, but Y2, another (and hopefully better) estimate. Substituting
and rearranging,

f(y.)
Y2= Yl- f'(-y1 )

Y2 P Yl+)
z- y '-

Y Y+

Y a n [(n - 1) y, + y--r] (53)

Examining the second derivative, it is found that

f"(y) --- n (n - 1) yn-2. (54)

The curvature is not negligible, and increases with higher roots ---
introducing error into the approximation and thereby slowing the rate of
convergence.
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We could just as well have written the original expression in the form

n-1
--T- n(55

y f(y) 2 z - y (n = 3, 5, 7, 9, ... )

The left side is still a function of y which drives to zero at the desiredS: ~n- I

root. But 0 only for the trivial ease y z z C. Thus we can apply
the Newton-Raphson technique to

n+1f(y) Z - (56)

y- y

But now look at the derivativeall

n-1
f,(y) - (n 1) z ( y-- L--

2 n+1 2' (57)
y yT

and

2 2 n-3
f''(_ (_ _-1 A - y (58)

It is seen that there is a point of inflection exactly at the desired root.
This means that as the estimate approaches the true value, the slope becomes
virtually constant, thereby hastening convergence. The rate of convergence is
never worse than quadratic, and ultimately tends toward order of magnitude n.

Perhaps this process is best expressed in digital filter form; i.e., as an
output/input ratio. Thus

S(n + 1)z + (n - l)y n

= (n - l)z + (n + 1)y(

For the cube root, this reduces to

Y2 2z + y 3
= - (60)

Y1  z + 2y1
3

To cite an example, we find the following errors in the approximation to

after Padd ("optimized"), -0.000092

after modified Newton-Raphson, -0.28 x 10-12
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APPENDIX C

LOGARITHMS TO ANY BASE

The argument is "normalized" to a value in the range 3.165 > z* >
(3.165)". The ratio of these two limits slightly exceeds 10. The method is
strikingly similar to that used for square root. The parameter h is net to
zero.

If Z* = z x 1-n,

then h* a h + n. (61)

After the approximation has been applied,

logb z = logb z* + h*logb 10. (62)

The most commonly used bases are 2, e, 10, and 16. The necessary constants
are found in the first part of this paper.

We develop a Maehly rational function for lnez* using the transformation

z*- 1
px = ;p 0.52

1* + ox

Thus z* 1 - x and

3 5 7y nz: P+ 3 x + x + 7 x + (•

The coefficients of the Tschebyehev series are now computed. They are:

Y0 = 0.546850 950695 9441

Y2 = 0.028096 097358 0741

y = 0.001314 425494 3168

Y 6 = 0.000073 490993 0960

Y• = 0.000004 482077 7161

Y10 z 0.000000 287824 8525

Y12 = 0.000000 019125 8782

y14 = O.OOOOOU 101302 1921

"Y16 = 0.000000 000090 2873

Y1s = 0.000000 000006 3490
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'20 a 0,000000 000000 4515

Y22 v 0.000000 000000 0324

Y24 = 0.000000 000000 0023

Y26 = 0.000000 000000 0002

A Maehly rational function of the form

n 0 + cT +2 T + Y TjIn, z*. zz••4÷•T
1~~~~ + 22+0T + 06T

is now developed.

-0 = 0.543339 498483 1167

a 2 = -0.108861 411680 5337

= 0.002641 510414 0964

-0.000008 962142 2536

82 z -0.250375 253205 3509

04 2 0.008877 426771 5024

86 = -0.000076 902174 0061

At x =, (z* = 19/6), the relative error is -4.957 10-12.

APPENDIX D

RECOVERING AN ANGLE FROM RECTANGULAR CO-ORDINATES

Let us label the sides of
a right triangle X, Y and R.

x

Given any two, it is required to
find the angle 0.

We have immediately that R= X2 ÷ y2 . (64)
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Most programmers unhesitatingly (and unthinkinglyl) select one of the common
ratios

Y Y KSx tan 6, 1 = sin 8, 2 cos 6

and compute the inverse. There are serious objections to this cavalier
approach:

(1) Near 6.= 900, tan 6 presents scaling diffioulties as the slope
increases without bound.

(2) Also near 6 = 900, sin e becomes a most imprecise measure of
angle, since the slope approaches zero, rendering the function insensitive to
changes in the argument.

(3) Near 8 0 0, cos 8 exhibits the same disadvantages, plus the
additional one of failing to change sign as 8 passes through zero.

The answer usually is taught during the first week of most college trigono-
metry courses, then promptly forgotten:

0 Y
tan 2 X + R (65)

6 e v
The function tan -behve2 very well indeed. Provided - 2 e (

the absolute value of tany varies between 0 and 1, while its slope

varies between 1 and 2. This fundamental identity appears in many forms,
two of which are

tan sin - . tan
2 1 + cos e 1 + V tan

Applying the identity a second time yields (since
y2 + (X + R)2 = 2R (X + R)):

Y
tan A - (66)

4 (X + R) + 42R(X + R)

For simplicity in notation, let Q: -- K. Then

Ytane t

S (X + R Q) + V2(2R + Q)(X + R)

or

t z tan ("(= Q i67)e (X + R + Q) + /2Q(X + R -+-07
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The Psdd approximation now is used to recover the angle 6 . It is

8 8 srctan t Zt 189 + 147t 2 + 12.8t0\( 189 + 210tZ + 45t4 /

* The error in 6 is less than 2.2 x 10-10 radians.

Combining factors and employii,1i - -d *)olynomial form yields

( t+ 1176)t2 +1512"rdin 'Vt + 210)t2 + 189 J•

or

(e1228.8t2 + 14112)t2 + 181441d0egreos U t (tz + 14)tz + 12.6 J

It is to be remarked that in order to achieve this accuracy, a Maclaurin
series would have to employ the t13 term, while a Tschebychev series
requires six coefficients expressed to 10-digit accuracy.
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MOS TRIN•A1NG COURSE-. SELECT:ION

CRITERIA: AN APPLICATION OF DISCRIMINANT ANALYSIS

Pat Cassady and Lounell Snodgrass

Analysis Branch 11
L Training Effectiveness Analysis Division

US Army TRADOC Systems Analysis Activity
White Sands Missile Range, New MexicoF/

I. INTRODUCTION

This is a study of criteria by Which soldiers are selected for Military

Occupational Speciality (1OS) training schools. Three distinct MOS's and

their associated training courses are considered. For simplicity, they will

be referred to as MOS A, OS B, and MOS C.

Intelligence screening of new recruits is accomplished with the Armed

Forces Qualification Test (AFQT). Job or occupation qualifications are

determined with the Armed Forces Vocational Aptitude Battery (ASVAB). These

tests are described in Tables 1 and 2. In the development of ASVAB, training

course performance was taken as the measure of soldier performance. Aptitude

composites were developed to maximize validity coefficients. Consequently,

the composites are composed of several tests and are highly intercorrelated.

For a description of the development of the aptitude composites see Fuchs and

Maier (1973, 78). Composite scores normally range from 40 to 160, with an

average score near 100 and standard deviation near 20.

Typically the selection criteria for a specific training school (course)

will consist of a minimum score on a single ASVAB composite. Unlike raw test

scores, aptitude composites are maintained in a soldier's personnel file where

they can be easily obtained by a particular school. Rarely, minimum scores on

tw composites may be required. As weapon systems, the Army population, and

training courses have evolved; some schools have experienced high attrition

rates. TRADOC Systems Analysis Activity (TRASANA) vs asked to study samples

from three MOS school (courses) and recommend improved selection criteria.
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TABLE 1

TESTS IN THE ARMED SERVICES VOCATIONAL APTITUDE BATTERY (ASVAB)

.... CATEGTORY "TEST TITLE " TEST SYMBOL

General Ability t Arithmetic Reasoning R
Tests General Information I GI

Mathematics Knowledge W MK
Science Knowledge I SK
Word Knowl edge I WK

Mechanical Ability Automotive Information j Al
Tests Electronics Informattiou EI

IMechanical Comprehension MC
Trade Information ] TII ~II

Perceptual Ability Attention to Detail I AD
Tests Pattern Analysis I PA

I ~II
Classification Attentiveness Scale I CA

Inventory Combat Scale I CC
Electronics Scale I CE
Maintenance Scale I CM
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TABLE 2

L APTITUDE AREAS AND RELATED ARMY JOBS

Aptitude Area Composite
I Symbol Title ACB Tests Major Related Jobs

CO Combat AR+TI+PA+AD+CC infantry, Armor, Combat Engineer

FA Field Artillery AR$3I4MK+EI.CA Field Cannon and Rocket Artillery

EL Electronics Re- AR+EI4#C+TI+CE Missiles Repair, Air Defense
pair Repair, Tactical Electronics

Repair, Fixed Plant Communication
Repair

OF Operators and GI+AI+CA Missiles Crewman, Air Defense
Food Crewman, Driver, Food Services

SC Surveillance and AR4WK+MC49A Target Acquisition and Combat
Communications Surveillance, Communication

Operations

MM Mechanical Main- MK.AI+EI+T14(M Mechanical & Air Maintenance, Rails
tenance

GM General Mainte- AR+SK+AI4MC Construction and Utilities,
nance Chemical, Marine, Petroleum

CL Clerical AR+WK+AD4CA Administrative, Finance Supply

ST Skilled Technical ARi4K+SK Medical, Military Police, Intell i-
gence, Data Processing, Air
Control, Topography and Printing
Information, and Audio Visual

GT General AR4WK Used only to qualify for special
tests, as Officer Candidate Test
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Of course, high attrition rates might be remedied by improving the courses.

This remedy has been done: however, this was not part of the TRASANA study.

11. DATA

One sample was provided for such MOS. The current selection criteria,

the number passing and falling, course scores, ASVAB composite and AFQT scores

were available for each MOS sample. The type of failure -academic,

non-academic was known for MOS C. These data are summarized in Table 3.

TABLE 3

I MS CURRENT I EUI.SER NOIUE ' NUR9ER
SELECTION PASSING FALRSNNAAEI
CR.TERIA COURSE' FAILUC•'.,C

A EL > 90 I 114 69 N/A
I CL T90 II I I I
I B fL> 90 I 227 78 N/A

IIII
I C EL > 120 j 109 73 23[. - . , . . . [ I,

I11. ANALYSIS

Stepwise discriminant analysis was the technique chosen to determine

improved selection criteria. This method produces a linear combination of

ASVAB composites bhich best discriminates between the pass and fail groups.

This l inear discriminant function allows the incorporation of posteriori

probabilities and the costs of misclassification. The resulting

classification procedure minimizes the expected cost of misclassification

under certain conditions. For a description of discriminant analysis see A.A.

Afifi and S. P. Azen or T. W. Anderson.
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A. MOS A ANALYSIS

This analysis produced MM and ST as the variables which best

-discriminate between the two groups. For simplicity of application, selection

criteria are traditionally given as minimum scores on one or two (rarely)

composites, Consequently, the linear discriminant function is not a

practical classification tool. .To determine a more practical classification

procedure, the 114 sample cases were ranked first by MM, then by ST. The

following classification procedure was then determined: if MM > 100 and

ST > 100 classify as pass; otherwise classify a- fail. A graphical conparison

of the two procedures is given in Figure 1. The attrition rate using the

proposed WI/ST criteria would be 15.5%, while reducing the number of soldiers

chosen for the course by 56 (see TABLE 4).

An alternate criterion, proposed by Army School A, using EL > 105

was also considered. Course attrition and the course attendees available for

this sample are shown in TABLE 4.

TABLE 4

RELATIVE EFFECTIVENESS OF THREE ALTERNATIVE COURSE
SELECTION CRITERIA FOR MOS A

SEECTON ATT:NDEESI GRADUATES' RON-GRADUATES ATTRITIONI-_CRITERIA SE.LECTED' I . . RAT.E (%).

IACTUAL:

LL CL > 90 114 69 45 39.5

JALTERNATIVES: I

MM > 100, 58 49 9 15.5
ST > 100

EL > 105 56 42 14 25.0
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B. OS 8 ANALYSIS

t This analysis was different from the MOS A analysis since all

f criteria considered included the original EL criteria. The discriminant

analysis chose SC as the best predictor of passing or fai ing the NO0 B

c ur se. Chi-square tests were performed to test for the independence of a

selection criterion from the pass or.fall classification. Table S summrites

the proposed criteria, their attrition rates, and the number of soldiers

selected from the sample.

TABLE 5

RELATIVE EFFECTIVENESS OF ALTERNATIVE COURSE SELECTION

CRITERIA FOR MOS B

I SELECTION ATNENME5 GRADUATES NON-GRADUATES AIIRITION'l
" CRTERIA SELECTED' RATE (5)

ACTUAL:
I I

El>90 305 227 78 25.6

I ALTERNATIVES: II -I

* EL>95 235 184 51 21.7

EL>100 157 132 25 15.9 II I
EL > 90 132 116 16 12.1
SC 100

EL > 90 182 154 28 15.4 I
I I95
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C. MOS C ANALYSIS:

This analysis also considered the original criteria (EL > 120) as a

* necessary condition for any new criteria since the sample used for the

discriminant analysis was chosen by this criteria. The discriminant analysis

chose GQ as the scare that best discriminates between pass or fall groups

(academic failures). The non-acadumic failures were not included in the

analysis. Chi-square tests were performed to test for the independence of a

selection criteria from the pass or fail classification. Table 6 summarlzes

the proposed criteria, their attrition rates, and the number of soldiers

selected from the sample.

TABLE 6

RELATIVE EFFECTIVENESS OF ALTERNATIVE COURSE SELECTION CRITERIA FOR MOS C

SELECTION ATTENDEES GRADUATES NON-G'ADUATES ATrITION-
I CRITERIA' SELECTED RATE (%I

ACTUAL:

E.>120 182 109 73 40.1 I

ALTERNATIVES: I
E0125 103 69 34 33.0 "
EL..130 56 46 10 17.9

EQ>120& &
GW125 78 60 18 23.1 ,

ELQ120 &
GMT120 102 75 27 26.5 I

I 24
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IV. SUI4MARY

The proposed criteria that best discriminates between graduating or

j ! non-graduating from the MOS A course were an MM > 100 and ST > 100. The best

selection criteria for MOS 8 were EL > 90 and SC > 95. Finally the most[ promising selection criteria for NOS C were EL > 120 and GM > 120. These

conclusions are based on the alternate criteria that lower course attrition

while do not substantially reduce the attendees selected.

V. POINTS OF DISCUSSION:

A. The data for the MOS A and MOS B analysis contained no distinction

between academic and non-academic failures. Since ASVAB composites are

intended to indicate subject aptitudes, their use to predict non-academic

failures might be questioned. Depending on the sample their inclusion or

exclusion could significantly alter the conclusions.

B. All samples in the study were selected from current courses.

Therefore, all cases met the current selection criteria for each sample. For

MOS B and MOS C the current criteria were included as part of the new

criteria. For MOS A the current criteria was omitted. The justification for

this is that current criterion is not very restrictive. The statistical

justification for such a generalization is lacking.

C. In the MOS A analysis a ranking procedure was used to develop

absolute cut-off scores for a classification procedure. The relation of such

a procedure to that of the discriminant function and its "optimal" properties,

if any, were ignored.
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THE ARMOR COMBAT FOR MODEL SUPPORT (ARCOMS) FIELD EXPERIMENT

-sRoger F. Willis
* US Army TRADOC Systems Analysis Activity

White Sands Missile Range. New Mexico 88002

ABSTRACT.

The Armor Combat Operations Model Support (ARCOMS) Test, Phase II, is a
force-on-force field experiment aimed at collecting target acquisition and
engagement data for use in the design and running of combined arms simula-
tions and war games. TRASANA is the proponent and the test will be conducted
by TCATA at Fort Hood in January-February 1981. Tactical realism would be
unacceptably sacrificed if certain key variables were controlled. Due to
resource constraints, very few replications can be run under given conditions.
This presentation will pose the question (specifically for ARCOMS) of how to
extract the maximum amount of valid information from relatively uncontrolled
field experiments (operational tests) carried out with very small sample sizes.

1. Background.

a. ARCOMS will be the first in a series of field experiments carried out
to provide better input data for combined arms models and war games.

b. It has been recognized for years by the modeling community that we do
not have adequate data on attacker detection rates, in realistic force-on-
force conditions, and on attacker engagement dynamics and fire distribution.
The ARCOMS test also presents the opportunity to gain valuable insights con-
cerning alternative attacker tactics and defender detection rates and defender
fire distribution.

c. For the first time intervisibility between combat vehicles will be
measured dynamically and recorded automatically.

2. Purpose.

The purpose of ARCOMS is to examine the combat processes in a force-on-force
environment and to provide input data for TRADOC combined arms models, simu-
lations and games. Emphasis is to be placed on identifying the process by
which the attacker acquires and uses information during the attack. Data on
detection probabilities will be keyed to the times at which intervisibility
starts. TRASANA will use the data to develop algorithms and to provide input
parameters for the revision of combat models. In addition to serving as an
empirical source for probability distributions and other data for models,
the ARCOMS test outputs will be used for testing a number of hypotheses about
the basic nature of combat processes.

2
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3. Scope. ARCOMS will consist of a series of force-on-force experiments of a
platoon-sized unit defending against a company force, with deliberate variations
in terrain and attacker tactics. This phase will examine intervisibility, the
fire &nd maneuver interactions. To the extent possible, low visibility condi-
tions will be considered.

4. Gross Design of Test.

a. The conditions for the twenty-four test runs (individual battles) are
defined in Table 1. Four major factors are varied: attacker tactics, type of
defense, light level, and terrain type (A or B). Note that we will not have
enough runs to investigate some of the interactions that one suspects might
be important. For example, the rapid approach tactic will not be run in Type B
terrain; there will be no night trials in Type B terrain; and the rapid approach
tactic will nut be run at night.

b. It will be possible to develop estimates of the impact of some of these
major factors on key measures (e.g., on average attacker detection rate). For
the impact of "light level" we will compare run set A with run set B, or set E
with set F. For the impact of "attacker tactics" we will compare set A with
set D (or set E with set H), etc. In order to increase sample sizes in some
cases we will lump sets together. For example, we get a sample of six battles
by lumping set A with set E, assuming that the differentiation between hasty
defense and deliberate defense might not be significant (for some measures).

5. Quantities to te Measured.

a. Before listing the outputs ultimately needed from the experiment we
will discuss the quantities that will actually be measured. Briefly we need
to measure things like who could ha'' detected whom and when, who actually
detected whom and when and why, who "killed" (laser hits) whom and when, and
how was information transmitted and used.

b. For each combat vehicle (attacker as vehicles and defender vehicles)
the test time-tagged data of the following types will be collected:

(1) position location

(2) line-of-sight (laser A)

(3) detection

(4) firing (laser B) I
(5) hit and/or kill

(6) video through the gunner sight

(7) audio

I
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f 6. Uncontrolled Factors.

"In order to approach tactical realism many important factors (that could in-
fluence the quantities measured) will not be controlled. However, to the
extent possible, the values assumed by these uncontrolled factors will be

* measured or estimated during the trials or recaptured after the trTaTl'. Some
of these uncontrolled factors are listed in Table 2. The attacker task force
commander and the defender platoon commander, who will be varied extensively
during the course of the test, will each be given a broad mission. The details
of how they carry out their missions will be up to them. Actually data on how
much variation we observe between individual commanders presumably carrying

L rL out the same mission will also be important information.

7. Major Test Outputs.

We list here only the most important measures (dependent variables) expected to
be produced hy analysis of the data collected during the trials. The next step
would be to correlate each of these measures with the controlled variables
(Table 1) and also with the uncontrolled variables (Table 2). (An example is:
correlation of attacker detection rate with the force ratio - obtained by
dividing the number of attacker weapons ready by the number of defender weapons
ready. This initial force ratio will usually vary from battle to battle, de-
pending on the states of readiness of the individual weapons plus their instru-mentation added on for the test.) The major output measures are as follows:

a. attacker detection time - conditional (given a detection)

b. attacker detection time - unconditional

c. defender detection time - conditional (given a detection)

d. defender detection time - unconditional

e. attacker engagement time

f. defender engagement time

g. time at least 3 attackers in LOS, etc.

Sh. time at least 3 defenders in LOS, etc.

i. attacker fire distribution patterns:

(1) defender sites intervistble with attackers but not engaged by
attackers

(2) defenders engaged "simultaneously" by 2 attackers, etc.

(3) number of rounds fired per engagement
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Sj defender fire dis•tri!)ution patterns:

E : °(]1) .attackers intervisible but not; engaged by defenders

(2) attackers engaged "Simultaneously" by 2 defenders, etc.

(3) number of ,oL-rds fired per engagement

k. frequency of atteckcrs engaging false targets

1. frequency of dfeiadrs engaging false targets

SAdditional Hypot- e.as.

Although the primary purpose of ARCOMS is to collect data on detection raLes.

engagement rates, etc. to provide inputs for combined arms models and war games,

the same data set will be used by TRA-SAA to investigate a number of.tactical

hypotheses in the areas of:

a. detections by attacker

b. attack,:r communications

c. ''tacker control of movements

d. ,.'--gadation or anhancement

e. defender allocation of fire

F. defender disengagements

These hy;•otheses, after field testing, will be either rejected, accepteA, or

,ý.Hified and the accompanying analyses will provide insights that will be

:ven more valuable than model inputs. These insights might contribute to

improvement in the structures of the combat models and to more credible

theories of combat.

9. Analysis Procedures.

The following types of analyses will be carried out with the ARCOMS data:

a, Plotting and graphics of battles

Serial correlations

d. Arnalysis ,cf .,'

Theoretical dir:,"-.iion fiLtlng

Hypotheses ,cstiir
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g. Evaluation of tactics

h. Comporison of LOS data with digitized terrain

i. Analysis of detection data and model improvement (by NVEOL)

2

I

249



W, FIR§ -4'~ .

wi
uit 413

42 E3 433 43

4J 41I 4-1 413

fI S. S.. S. .I

Lii E4-E

LAJZ

>.

** #1v

ao 4" t % w A 0-

cc LA C) La LA. to. .

UJ~ 4 - 4 'U 3 434250



"............. .............

TABLE 2 - ARCOMS UNCONTROLLED FACTORS

A. DEFENDER

1. Decision to move
2. Number of weapor.s ready.
3. Communications '(target :handoff)
4. Frequency of'firing - ...
S. Distribution of fire .'

6. Amount of concealment
7. Open-fire ranges

B. ATTACKER

1. Velocity

a. individual weapons

b. platoons

2. Specific movement patterns (use of terrain, trees, etc.)
3. Number of weapons ready
4. Use of overwatchers
5. Familiarity with terrain
6. Communications (target handoff)
7. Distribution of fire
8. Frequency of firing

C. ENVIRONMENT

1. Visibility
S 2. Weather
3. Other obscuration
4. Range (distance)
5. Vegetation
6. Angle of sun
7. Target background
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EXTREME VALUE QUANTILE RESPONSE EXPERIMENTAL DESIGN

Jill H. Smith
Jerry Thomas

Probability and Statistics Branch
Ballistic Modeling Division

U.S. Army Ballistic Research Laboratory
Aberdeen Proving Ground, Maryland

ABSTRACT. An experimental design has been developed to be used to

deteraine' --- e- shielding thickness required between rounds stored in a
storage area to prevent round-to-round propagation from an initial explosion.
Extreme value quantile response techniques were used with shielding
thickness as the stimulus variable. The developed design drastically

reduces the sample size required for a given quantile and confidence
when compared with known distribution-free extreme value designs.

1. INTRODUCTION. The Terminal Ballistics Division of the Ballistic
Research Laboratory encountered the problem of determining how thick the
shielding should be between rounds of ammunition stored in a storage area
to prevent round-to-round propagation from an initial explosion. Vulnera-
bility analysis indicated that the probability of survival of the storage
area would drastically decrease with an increase in the number of rounds
exploding. Prior testing has shown thai shielding material placed
between rounds could prevent neighboring rounds from exploding. Due to
space limitations in the storage area, it was desired to keep the shielding
thickness to a minimum and simultaneously minimize the probability of
round-to-round propagation.

It was decided that the specific objective of the test would be to
find the shielding thickness needed to be 90% confident that the proba-
bility of a neighboring round exploding is less than 0.1.

The problem appeared to fit into the category of extreme value
quantile response problems. Defining X as the stimulus variable, in this
case the thickness of the shielding which effects the stimulus, and the
probability of a response associated with a given X, x, is described
by a nonresponse function M(x). (Usual notation has M(x) as the probability
of response. However, defining M(x) as a nonresponse is more natural for
this problem.) This function is assumed to be monotonically nondecreasing
with increasing stimulus levels.

A discussion of available designs and the modified design chosen
for the experiment is contained in the following chapters.

2. AVAILABLE DESIGNS. A nonparametric approach was taken because of
the lack of information about the response function. As stated, the
quantile in which we are interested is a = .10, and therefore is in the tail
of the response distribution. From a review of the available designs in
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the literature the only nonparametric test designs available for testing
in the tail regions are the Alexander Extreme Value Design and the
Rothman Design. Of these, the Alexander Extreme Value Design is preferred
since it:

1) Is "generally more efficient than other available nonparametric
designs, and is asymptotically as efficient as the best p•rauetric stochastic
approximation when distributional assumptions are valid,"p

F 2) has significantly simpler design rules and analysis procedures
than the Rothman Design, and

3) does not differ in median required sample size.

3. ALEXANDER EXTREME VALUE DESIGN. The Alexander Extreme Value
Design assumes only a monotone nondecreasing response function as the
stimulus increases.

A. Design Rules

1) The first test is at level (shielding thickness) XP, the
a priori best guess of Xa.

2) Testing is performed by alternately increasing and decreasing
sequences of test levels. The test levels are increased or decreased by a
step size 8, where 6 is a fraction of an estimate of the standard deviation.
Terms such as "higher" and "level above" refer to thicker shielding
levels, and "below" and "lowest" refer respectively to thinner and thinnest
shielding thickness levels.

3) The first sequence decreases the levels until a response
(explosion) is observed.

4) The first test of an increasing sequence is at the level above
the highest level at which a response has been observed. The increaling
sequence ends at level X such that in the corresponding zero region' less
than or eaual to Xi at liast N nonresponses have been observed. Values
for N can be found from

(I - I)n. 1 - P (2.1)

where N a In) + 1 and P is some specified probability.

ID. Rothman, M. J. Alexander and J. M. Zimmerman, The Design and Analysis
of SensitivitZ Experiments, NASA CR-62026, Vol. I, p. 7 4 .

2 Zero region - stimulus region above the highest level at which a response
* has been observed.
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5) The first test of a decreasing sequence is at the level above
Fr the highest level at which a response has been observed. If the result

is a response, the sequence ends; otherwise, one more test at the next
lower level is performed.

6) Testing terminates when there are three adjacent levels, X.,-

Xr * 6 and Xr + 28 such that at least one response has been observed at X

and none at a higher level, and a total of N nonresponses have been

observed at Xr-+ 6 and Xr * 26. (8 is the stev size between levels.)

7) The maximum likelihood estimate of X•, X•, is found by the method

of reversals and linear interpolation (see Appendix).

B. Analysis

We are interested in the a - .1 quantile of the response distribution,
that is, the value, X.,, at which the probability of a response is .1.

Therefore, the probability of a nonresponse at the X.I quantile is (1 - .1).

The probability of n nonresponses, assuming the n tests are independent,

is (1 - . 1 )n. The probability of at least one response out of n tests

is I - (I - .1) . Specifying the probability of at least one response
out of n tests at the X., quantile to be P a .9, we have

.9 I - ( 1 _ .,)n.

This, with a slight algebraic manipulation, is Equation 2.1 with a = .1
and P a .9. Solving, N a fn] * 1 a 22. Hence, we would expect with
probability .9 at least one response out of 22 tests at the X., quantile.

If we observe 22 nonresponses at some level X,, we can assume we are not
at the X.1 quantile and, in fact, the

Prob {Xl < X,) > .9

Using the above argument, we can conclude from the Alexander Extreme
Value Design that the level at which the true probability of response
is .1 is less than Xr + 26 with ninety percent confidence. The point estimate

of the X., quantile can be found using the method of reversals outlined in the

Appendix.

C. Simulation

Based on "guestimates" for X and X.7, a response distribution was hypothe-

sized with which to Monte Carlo the Alexander Extreme Value Design for
a .1 and P - .9. The response distribution assumed was the cumulative
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normal distribution with moan u .S and variance u .14. (Note, however,
that the test design and analysis procedures are distribution-free.)
The smallest practical stop size of shielding thickness was 1/8 inch.

Figures 1 and 2 are examples of the Alexander Extrme Value Design
Monte Carloed to illustrate the design rules. Responses are denoted by
"XK" 's and nonresponses by "0" Is. Ii denotes the i-th increasing sequence

and D the j-th decreasing sequence. The number of rounds required (NR),
Aj

j) the maximum likelihood estimate of the .1 quantile (X. and the

(X + 26) level are given for each simulation.r

frFigure 3 shows the distribution of the number of rounds required
for SO0 simulations of the above design. The number of rounds required
is twice the number of responses and nonrosponses shown for each simulation
since a donor round must be detonated for each test round. The average
number of rounds required to complete the test was 166, the median was
164 and ten percent of the tests required 184 rounds or more.

The distribution of the maximum likelihood estimates of X 1. for

the 500 simulations is given by the histogram in Figure 4. the distribu-A

tion of X. is asymptotically normal about the true X. 1 quantile a 7.83.

The distribution generated by the test data shown in Figure 4 has a
mean of 7.77, which is in good agreement for 500 simulations, and is
approximately normally distributed as shown by the overlying normal curve.

Figure S shows the distribution of level Xr + 26 for 500 simulations.

This is the level about which we can conclude that the

Prob (x. 1 < Kr * 26) > .9.

4. MODIFICATION OF THE ALEXANDER EXTREME VALUE DESIGN. The median
number of rounds required for the Alexander Extreme Value Design (EVD), as
described in the previous section, was 164 as determined by the 500(

simulations. Since the number of rounds available for testing was con-siderably smaller, the major objective in modifying the Alexander LYD was
to reduce the number of rounds required, while maintaining the confidence

level and the ability to compute the point estimate of the X.1 quantile.

The Alexander EVD requires that a donor round be detonated for each
test. The number of donors needed can be reduced by using one donor to
detonate up to four test rounds (acceptors). Figure 6 shows the config-
uration of four acceptors per donor. Steel shielding will be placed
between acceptors, as shown by the dotted lines, if interaction between
acceptors is observed. Optimizing the number of acceptors per donor in
the Alexander BVD reduces the number of rounds required by approximately
33 percent.
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It was noticed that the rounds above level Xr + 26 were neither used to

establish the confidence statement, nor to terminate the test design, nor to
compute the point estimate of the X.1 quantile. by liniting each increasing

sequence above the highest stimulus level at which a response has been
observed, the rounds "wasted" above level Xr * 26 can be eliminated. There
is a trade-off in eliminating these rounds since the level Xr + 26 can
change if a response is observed at a higher level. Therefore, some testing
should be above + 26 until more than half the number of rounds required

* to demonstrate the chosen probability are at levels Xr + 6 and Xr * 28.
Testing at Xr and below is used in the determination of the point estimate
of X.1 .

The following test design is the result of many Monte-Carlo simula-
tions in which different starting levels, number of acceptors per donor
and sequences of testing have been tried in order to minimize the required
number of rounds, yet retain the confidence level and point estimate of
the quantile X.

A. Modified Design Rules

1) The first test level is X1, the best a priori guess of Xa.
6 is the step size between levels.

2) One acceptor per donor is used, in a decreasing sequence, until a
response is observed. Let Xr be the highest level at which a response
is observed.

3) After the first response, the number of acceptors per donor
in each test is increased to alternately three and then four. After the
first response, three acceptors per donor are tested at the next three levels
above Xr. Then four acceptors per donor having shielding at levels Xr
and the next three higher levels are tested.

4) If another response is observed at a higher level, it becomes
X , and testing continues alternating three and then four acceptors per
dAnor until at least 12 (more than half the required 22) nonresponses
have been observed at the two levels immediately above Xr-

5) When at least 12 nonresponses have occured at Xr + 8 and Xr * 26,

the number of acceptors per donor is reduced to alternately two above Xr and
then three, starting at Xr, for the remainder of the test.

6) Testing terminates when at least N (22) nonresponses have been
observed at the two levels immediately above the highest level at which
a response has been observed.
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B. Analysis of the Modified Design

As in the Alexander Extreme Value Design, we have N .22 nonresponses
at Xv + 6 and X. * 26 and can conclude that we are not at level the X.,

quantile and in fact,

Prob ( X  < Xr 26) > .9.

The point estimate can again be found using the method of reversals. There-
fore, the changes in the test design have not affected the confidence statement
or the point estimate.

C. Simulations Using Modified Design

Using the same response function that was used when simulating the
Alexander Extreme Value Design, S00 simulations of the modified design
were also Monte-Carloed.

Figures 7 and 8 are examples of the modified test design illustrating
the modified design rules. Again, responses are denoted by "X' Is and
nonresponses by "0" 's. The abscissa represents individual tests rather than
sequences of tests as shown in the Alexander Extreme Value Design.

Figure 9 shows the distribution of the required number of rounds for
the 500 simulations. The median number of rounds required was 67 and the
mean number of rounds, 70. Only ten percent of the simulations required
93 or more rounds.

The histogram in Figure 10 is the distribution of the maximum

likelihood estimates of X for the SO0 simulations. Again, the distri-

bution of the maximum likelihood estimates are asymptotically normal
about the true X quantile w 7.83. The distribution shown has a mean of
8.00, and is appi!ximately normally distributed as shown by the overlying
normal curve. Figure 12 shows the distribution of number of rounds required
for both the Alexander EVD and the Modified Alexander EVD. The Modified
Alexander EVD is on the left and the Alexander EVD is on the right.

S. SUMMARY. The Alexander EVD was modified, mainly, by using multiple
rounds per test and by limiting the number of rounds above the highest
response. These changes resulted in a design that required less than half
the rounds of the Alexander EVD in the simulations performed. The range of
the required number of rounds (NR) for the Alexander EVl) was from 134 to 256
and for the modified Alexander EVD was 46 to 140. The Modified Alexander
EVD has simple design rules that permit the estimation of an extreme
value of a quantile response function and the associated confidence interval.

This report used only the normal distribution as the assumed underlying
distribution for the Monte Carlo simulations. Other distributions are currently
being used for this purpose. A reduction in the number of rounds required
for these distributions is also expected. Recall, however, that neither
the experimental design nor the analysis methods require the assumption of
a response distribution. The design is distribution-free.
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APPENDIX

M4ETHOD Of REVERSALS FOR SENSITIV17Y DATA

1. METHOD. The method of reversals is * maxianmlikelihood procedure
for obtain1Ing~istribut ion- free estimates of a monotone nondecreauing
response function. The test stimulus levels are X (I a 1,2,...,k) end
are ordered from thickest to thinnest shielding thickness,

Xl > Xa * (A.l)

1 2.>... > - -

if pi is the estimate of the probability of response at X v ad if we

assume that the response function is monotone nondecreasing, then neces-
sarily

'~~k (A.2)

The algorithm below cani be used to find the estimates of the response dis-
tribution and their associated stimulus leVels.

1) Let X (i al, 2,...,k) be the k stimulus levels at which data have been
iA

collected, where > . We wish to find the estimates., pN of
the values ~.*M(Xi), the response probabilities at the levels Xi. which

satisfy Equation A.2.

2) Let ni (i - 1,2,.. .,k) be the number of tests performed at levelXan
( 1 1,2,...,k) be the number of responses observed in the ni tests.

Consider the sequence

~1 2_k
n n

If this sequence is nondecreasing, then the estimates p1 are simply given
by

Af.

fp f

3) If for some a, -> us replace both by

Ilj n1,
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The new sequence is then

1 I f2 fi-i F ii.l fi.2 fk
•1°•2'""'n•l' 1,1+1' W-•.26 "°

If this sequence still contains a reversal, a pair of consecutive fractions
for which the first is greater than the second, replace the pair with a
single term as above. This process is continued until one obtains a non-
decreasing sequence:

ýl 12 f~3

f f + f ÷fs
where nJ for appropriate i and s.nj n + .. .÷h ..

4. The final estimates are given by

ApPi =1'" +3t~ nj

S. Linear interpolation is used to compute the values of the response
function between stimulus levels tested.
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If ,t; .. . . .. -h -a r-f-

1,• " 2. VXW 1. If-theoresults Of the experiment ere as shown in -iguo .Al
the maxuimn-TIlihood estlmate found by the method of reversal s s as

- - follows:

Shielding Thickness f /n.
1, 1 N(inches)111

4/8 1/1 1.0

S/S0/2] 1/3
6/8 1/2 .3

718 2/6 .3

, 8/8 1/9 .11

9/8 0/12 0

-9/8 0/10 0

The shielding thickness corresponding to the .1 quantile is found by
linear interpolation.

01 • 01

9/8 1.13 .0

The shielding thickness associated with the .1 quantile is 1.01 inches.

1

I
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MODIFIED TEST CONFIGURATION

FIGURE 6
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The Rank Transformation as a Robust
and Powerful Tool for the Analysis of Experimental Data

W. J. Conover, Texas Tech University

Abstract

Rank Transformation procedures are ones in which the usual parametric proce-
dure is applied to the ranks of the data instead of to the data themselves. In

the one way layout the rank transformation procedure is equivalent to the

Kruskal-Wallis test. Simulation results using various distributions show that

this procedure tends to have more power than either the F test or Fisher's ran-

domization test, a well known nonparametric procedure.

The rank transformation procedure for the two way layout is compared with

the F test and Fisher's randomization test under normality and several types of

nonnormality. Overall the rank transformation procedure seems to be the best.

The Fisher's LSD multiple comparisons procedure in the one way and two way

layouts is compared with a randomization procedure and with the same procedure

computed on ranks. In nonnormal situations the rank transformation procedure

appears to maintain power better than Fisher's LSD or the randomization proce-

dures. The conclusion of this study is that the rank transformation provides a

reasonable alternative to the usual analysis of experimental designs.
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1. INTRODUCTION

Three methods for analyzing experimental data are compared in this study.

The first is the standard analysis of variance procedure based on the assumption

of normality and assumed to be robust in most situations encountered in prac-

tical applications. The second is a randomization procedure attributed to R.A.

Fisher (1935), which is known to be "most efficient" in some sense, and is

A! assumed by many practitioners to be the best test one could possibly use,

although it is difficult to use even with a computer. The third procedure

t involves a rank transformation of the data prior to the application of the first

procedure, that is it is an analysis of variance on the ranks.

These three procedures are compared in a completely randomized design (a

one-way layout) and in a randomized block design. Other designs could just as

easily have been selected for comparison, but the randomization test involves

such extensive computer time that only a limited study is possible. The robust-

ness of all three procedures is estimated under the null hypothesis by computer

simulation, and the power Is estimated under the assumed existence of treatment

effects, also by computer simulation. A multiple comparisons procedure is used

whenever the null hypothesis is rejected, and comparisons of the three multiple

comparisons procedures are made also.

These results were obtained by Ronald L. Iman of Sandia National

Laboratories in some joint research work with the author. More extensive

results appear in the unpublished manuscripts by Iman and Conover (1980a and

1980b) and by Conover and Iman (1980).
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The Rank Iransformation as a Robust
and Powerful Tool for the Analysis of Experimental Data

W. J. Conover, Texas Tech University

Abstract

Rank Transformation procedures are ones in which the usual parametric proce-

dure is applied to the ranks of the data Instead of to the data themselves. In

the one way layout the rank transformation procedure is equivalent to the

Kruskal-Wallis test. Simulation results using various distributions show that

this procedure tends to have more power than either the F test or Fisher's ran-

domization test, a well known nonparametric procedure.

The rank transformation procedure for the two way layout is compared with

th6 F test and Fisher's randomization test under normality and several types of

nonnormality. Overall the rank transformation procedure seems to be the best.

The Fisher's LSD multiple comparisons procedure in the one way and two way

layouts iv compared with a randomization procedure and with the same procedure

computed on ranks. In nonnormal situations the rank transformation procedure

appears to maintain power better than Fisher's LSD or the randomization proce-

dures. The conclusion of this study is that the rank transformation provides a

reasonable alternative to the usual analysis of experimental designs.
2
I
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2. THE COMPLETELY RANDOMIZED DESIGN

Let Xjj, IKi<nj, ljKJk be random variables representing the ith observation

in treatment j in a completely randomized design. Let 3.j and )(.. represent the

sample treatment mean and the overall mean respectively. The F statistic is

given by
(N-K ) Z.nj. (-f.j -K "' .2
(N-K) ~~,X 1 -(2.1)

Fu

(k-1) (Xij -. j)
I>Iij

Where N n flj is the total sample size. The F test compares the F statistic

with the F distribution, k-I and n-k degrees of freedom, and rejects the null

hypothesis of equal treatment means if F is in the upper a tail of the F

distribution. Such a test is exact under assumptions of identical normal

distributions, but is robust even for some nonnormal distributions. If the null

hypothesis is rejected, Fisher's LSD procedure is used to declare treatments

J, and J2 significantly different when the inequality

*1 I Y 'j1 - J2 (> t c,/2,N-k nj1n2 (2.2)
" /~~~nil .)

is satisfied, where

1SZ (Xij -7.j) 2  (2.3)

and where tp,m is the (1-p) quantile from a student's t distribution with m

degrees of freedom.

For Fisher's randomization test the F statistic from Equation (2.1) is com-

pared with the distribution of all possible F statistics arising from the NI/

n1 (n)l ways the same N observations can be partitioned into k groups of sizeJ
nj each, J-1, ... , k. In practice, even with high speed computers and moderate
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sample sizes the total number of combinations is too large to handle, so the

suggestion of Dwass (1957) is followed. That is, a random subset of the total

number possible is used to obtain an unbiased and consistent estimate of the

distribution function of the randomization statistic. In this paper k=4 and

(nj, n2. n3 , n4 ) is (7, 8, 9, 10). A subset of 1000 partitions, out of the more

than 1018 partitions possible, was used to estimate alphahat.

Whenever the alphahat was 5% or less multiple comparisons were made using a

7 procedure similar to that described above, only restricting the permutations to

the ways the observations in the two samples being compared can be partitioned.

Here again, only 1000 of the possible permutations were used for each

comparison. The treatments were considered significantly different if the

observed value ofI RJl - .,j 2 1 was among the largest 5% obtained.

The third test consists of replacing data by the ranks from I to N, and per-

forming an F test on the ranks. This is equivalent to the Kruskal-Wallis test.

Multiple comparisons were made by computing (2.2), as in the Fisher LSD

procedure, but using the same ranks used above instead of the data. These three

procedures are called the F, R and RT methods respectively.

Comparisons of these three tests were made for three population distribu-

tions, the normal, lognormal and exponential distributions. The null case was

examined, along with three non-null settings corresponding to slight, medium,

and Atrong differences in treatment effects. The parameters used are sum-

n arized in Table 1.

In each of these 12 combinations of distributions with treatment effects,

500 replications were made to compare the robustness and power of the three

tests. These results are given in Table 2. They show that the Fisher ran-

domization test and the rank transform test are robust for all three distribu-

tions, as expected because they are both nonparametric procedures. The F test
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TABLE 1. The population effects used in the comRleLely randomized design simu-

lation study: Means of the normal (a £=4), means of the log of the
lognormal (0 2 of logs 4), means 6f the exponential.

EFFECTS NORMAL LOGNORMAL EXPONENTIAL

Null (0,0,0,0) (0,0,0,0) (1,1,1,1)

Slight (0,0,0,1) (0,0,0,1) (2,2,2,3)

Medium (0,0,1,2) (0,0,1,2) (1,1,2,3)

Strong (0,1,2,3) (0,1,2,3) (1,2,3,4)

TABLE 2. The percent of time the null hypothesis was rejected in the completely
randomized design, four treatments, n1 -7, n2=8, n3 -9, n4 -10.

'FFECTS NORMAL LOGNORMAL EXPONENTIAL

Error Rate R F RT R F RT R F RT

in Null Case: 5% 5% 5% 6% 2% 7% 4% 4% 5%

Power Under

Slight Effects: 19% 19% 19% 9% 4% 17% 12% 10% 12%

Medium Effects: 52% 52% 49% 18% 12% 43% 47% 40% 46%

Strong Effects: 72% 72% 70% 22% 13% 69% 43% 37% 53%

on the other hand is robust for the normal and exponential distributions, but

quite conservative for the lognormal distribution. The conservative nature of

the F test carries over to inhibit its power for detecting differences in

lognormal distributions. The rank transform procedure shows the most power in.

the lognormal and exponential cases, and about the same power as the other two

procedures when the distributions are normal.

When the null hypothesis was rejected using the previous procedures, the

corresponding multiple comparisons tests were made as previously described. The

results, summarized in Table 3, show the same types of results as in Table 2.
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TABLE 3. The number of times treatment pairs were declared significantly dif-
ferent in 500 simulations, using CR design with 4 treatments, nI - 7,
n2 - 8, n3 -9, n4 - 10.

TREATMENT NORMAL LOGNORMAL EXPONENTIAL
EFFECTS -PAR- R r RT R F 'RT R F T

Null 1,2* 6 6 7 10 9 8 6 8 9
"1,3* 5 6 5 8 7 7 5 9 9
2,3* 6 4 5 7 7 12 10 10 10
1,4* 4 4 3 16 5 9 4 4 82,4* 5 5 4 10 6 9 3 S 72,4* 6 6 5 4 3 6 6 5 11

Slight 1,2* 17 21 17 3 5 17 7 7 13
1,3* 14 19 12 4 4 13 10 7 12
2,3* 21 23 20 4 2 22 7 4 15
1,4 54 53 51 11 20 57 20 24 23
2,4 56 53 52 11 18 57 20 28 15
3,4 48 48 54 16 18 51 30 34 24

Medium 1,2* 16 24 19 10 0 20 9 0 13
1,3 63 73 77 8 4 71 56 37 93
2,3 81 78 83 15 5 61 75 42 89
1,4 189 200 198 26 38 184 143 174 186
2,4 206 210 203 45 36 180 172 180 185
3,4 81 79 75 36 36 86 54 86 63

Strong 1,2 69 77 64 9 0 60 40 8 64
1,3 207 220 209 22 4 210 86 56 146
2,3 64 80 88 14 4 90 36 27 49
1,4 332 338 339 49 59 328 148 137 208
2,4 220 236 235 51 58 233 84 108 95
3,4 79 81 76 39 49 87 36 76 38

Simple totals:
Identical populations 100 118 97 76 48 123 67 59 107
Some effects present 1749 1826 1804 362 349 1775 1000 1017 1278

*These populations are identical.
That is, the LSD procedure on the ranks has more overall power to detect

differences where they exist than the other two types of procedures do. In

summary, for the CR design the transformation to ranks prior to the usual analy-

sis improves the robustness and power of the usual analysis in nonnormal

situations without losing much of the fine qualities of the usual analysis in

the normal situation.
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* 3. THE RANDOMIZED COMPLETE BLOCK DESIGN

Let Xij, for l<i<b and 1(j<k, be random variables associated with the ith

* block and the Jth treatment, and let Xt., X.j and I. be the sample block,

treatment and grand means respectively. The F statistic is given by

F.b(b-1) J (3.1)

S (xij - - 'T i )2

The parametric F test compares the F statistic with quantiles of the F distribu-

tion with k-1 and (b-i) (k-i) degrees of freedom. These quantiles are exact

under normality, additivity, and equal variances, and are reasonable approxima-

tions under mild violations of the normality assumption. If the F statistic is

in the upper a tail of the F distribution, the null hypothesis of equal treat-

ment means is rejected, and multiple comparisons are made. Treatments Jl and

J2 are declared significantly different if the inequality

I .Jl - Y.J21 > t a/2, (b-.) (k-I) / 2(SSE)/(b(b-1) (k-1)) (3.2)

is satisfied, where SSE is the denominator of Equation (3.1), and where tp'm is

the pth quantile from a t distribution with m degrees of freedom. This is the

well known Fisher's LSD procedure.

For Fisher's randomization test, as presented by Welch (1937) and Pitman

(1938), the F statistic is used, but not the F distribution. The F statistic is

computed for each of the (kl)b configurations of the observations, obtained by

permuting the observations within blocks. If the observed F statistic is one of

the (k1)b. % largest of these, the null hypothesis is rejected. In this study

k-3 and b-5, so the (31)5(.05) - 384 largest values of F constitute the critical

region. (The actual value 388.8 is rounded down to the first multiple of 6,
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because the configurations appear in a multiplicity of 6 and the alpha level

should be < .05.) The actual number of possible F values greater than or equal

to the observed F value is divided by (kl)b to obtain "alphahat," sometimes

j known as the p value or the critical level.

If alphahat is less than or equal to .05, multiple comparisons are made by

permuting only those observations in the treatment pair being considered.

A Because there are effectively only (21)5 - 32 different permutations, the treat-

ment pair is declared significantly different it and only if all pairwise dif-

ferences have the same sign, at a level of significance 2/32 - .0625. For

comparison purposes these same values of .05 and .0625 were used in the F test

described previously and in the following test.

The third test is a rank transform procedure found by Iman (1974) and

Conover and Iman (1976) to have good properties of power and robustness in ran-

domized block designs. First all b-k observations are replaced by their ranks

from 1 to b-k. The F statistic of Equation (3.1) is computed on these ranks and

compared with the F distribution, k-1 and (b-I) (k-i) degrees of freedom as an

approximation procedure, just as in the first method described. Multiple com-

parisons are made using Equation (3.2) just as in the parametric case, but using

the same ranks used above rather than reranking each pair of samples in a

Mann-Whitney fashion.

This study examines normal, lognormal and exponential distributions, under

the null case and with slight, medium and strong treatment effects. Under each

of these 12 populatlon-treatment combinations 500 replications were made, and

the three tests conducted. Thus 6000 computations of the F test (F) and the

rank transform procedure (RT) were made, and 7,776,000 F statistics were com-

puted for the randomization test as a different null distribution must be found

2
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TABLE 4. The population effects present in the simulation study: means of the
normal (a a 4), means of the log of the lognormal (a 2 of logs. 4),
means of the exponential. Add block effects (1, 2, 3, 4, 5) to the
means in the five blocks.

EFFECTS NORMAL LOGNORMAL EXPONENTIAL

Null (0,0,0) (0,0,0) (0.0,0)

Slight (0,0,1) (0,0,1) (0,0,1)

Medium (0,1,2) (0,1,2) (0,4,6)

Strong (0,1,3) (0,1,3) (0,7,g)

in each case. Specific values of the parameters used are listed in Table 4.

The results of the three tests are summarized in Tible 5 for the twelve

situations described in Table 4. The results are similar to the results for CR

designs presented in the previous chapter. That Is, the usual F test on the

ranks has better robustness and power in the nonnormal cases examined than the F

test on the data, and essentially the same robustness and power in the normal

situation. The randomization procedure has power somewhere between the power of

the other two tests.

TABLE 5. The percent of time the null hypothesis was rejected in the randomized

complete blocks design, five blocks, three treatments.

EFFECTS NORMAL LOGNORMAL EXPONENTIAL

R F RT R F RT R F RT

Error Rdte

in Null Case: 5% 5% 5% 5% 1% 5% 5% 3% 4%

Power Under

Slight Effects: 10% 10% 10% 8% 1% 8% 10% 7% 10%

Medium Effects: 22% 22% 21% 15% 2% 23% 18% 12% 23%

Strong Effects: 42% 42% 42% 34% 4% 41% 20% 17% ?7%
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TABLE 6. The number of times treatment pairs were declared significantly dif-
ferent in 500 simulations, using an RCB design with three treatments,
five blocks, one observation per cell.

DISTRIBUTION
TREATMENT NORMAL LOGNORURX EXPONENTIAL

EFFECTS R R -"F"-- RT R TR F FT

NULL 1,2* 11 14 17 9 2 13 9 8 13

2,3* 12 12 18 9 4 15 12 9 13

1,3* 7 11 13 12 4 18 12 10 10

SLIGHT 1,2* 15 16 21 3 0 18 4 4 10

2,3 34 41 42 17 4 30 18 19 23

1,3 29 36 33 18 4 27 11 17 23

MEDIUM 1,2 41 51 52 16 2 50 37 17 81

2,3 37 48 50 37 6 53 26 42 37

1,3 74 97 96 61 5 110 60 53 109

STRONG 1,2 51 64 65 15 0 56 51 45 106

2,3 96 136 135 105 20 117 22 40 27

1,3 163 204 204 117 19 198 64 57 118

SIMPLE
TOTALS:

IDENTICAL
POPULATIONS 45 53 69 33 10 64 37 31 46

SOME EFFECTS
PRESENT 525 677 677 386 60 641 289 290 524

*These populations are identical.

Multiple comparisons were made when the null hypothesis was rejected

using the previous tests. The multiple comparisons results given in Table 6 are

similar to the results obtained for the CR design in the previous section.
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Overall the rank transformation allows more real differences to be detected tnan

wher either of the other two procedures is used.

4. CONCLUSIONS

The usual F test, followed by Fisher's LSD procedure for multiple

comparisons, shows approximately the same robustness and power as Fisher's ran-

domization test and the rank transform procedure when the populations are

normal, slightly less power than the other two procedures with exponential

distributions, and considerably less power than the other two procedures when

the distributions are lognormal. This latter result may be due in part to the

extreme conservative nature of the parametric procedure under the lognormal

distribution, or it may be due in part to the nonhomogeneity of variances in the

models considered. Nonhomogeneity of variances is a natural consequence of

positive valued data when the means are different. It occurs often in actual

data analysis, so no attempt was made to alter the situation in this study

either.

Fisher's randomization test is a difficult and time consuming procedure to

use in experimental designs. This study indicates that the extra work required

is probably not justified, because while Fisher's randomization test shows

better power and robustness overall than the F test on the untransformed data,

it compares unfavorably with the F test on the ranks of the data.

The F test on the ranks of the data, with the subsequent LSD procedure on

the ranks, is an easy procedure to use. It has essentially the same power as

the F test in normal situations, and more power than either the F test or

Fisher's randomization test when populations are lognormal or exponential, at

least in the cases studied.
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ALTERNATIVE QUANTILE ESTIMATION

W. D. Kaigh

The University of Texas at El Paso

Abstract. An alternative to the conventional sample quantile is pro-

posed as a nonparametric estimator of a continuous population quantile.

The alternative estimator is a "generalized sample quantile" obtained by

averaging an appropriate subsample quantile over all subsamples of a fixed

size. Since the resulting statistic is a U-statistic with representation

also as a linear combination of order statistics, known results are employed

then to establish asymptotic normality. The alternative estimator is shown

to be asymptotically efficient in the class of nonparametric models specified

by Pfanzagl (1975). Analytic results and Monte Carlo studies with moderate

sample sizes indicate that the proposed estimator usually produces mean

square error of estimation less than that of the conventional sample quantile

and also jackknifes to provide approximate confidence intervals.

1. Introduction. Suppose that F is an absolutely continuous c.d.f. with

corresponding p.d.f. f. For 0 < u < 1 let G(u) - inf {x: F(x) - u) be an

inverse of F and denote the derivative G'(u) = 1/f[G(u)] when it exists.

For 0 < p < 1 define 4 to be the pth. quanrile of F which satisfies 4 M G(p).

We assume throughout that f( ) > 0.
p%

Suppose that XI ... I X are i.i.d. r.v.'s with c.d.f. F and denote

the corresponding order statistics by X 1 :n' "'"., X nn. Assuming no further

information regarding F, the conventional estimator of the population

quantile &p is the pth. sample quantile X [(n+l)p]:nwhere x denotes the

integral part of x. The asysiptotic distribution of the sample quantile is

given by the following well known result (e.g. Wilks (1962), page 273):
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Til- l) . . . n-(X -. )_ N(O, a (F)) as n -.

where
2 2 2

a p (F) p(lpl)/f2(•p) - p(l-p)[G'(p)j

In. a nonparametric context assuming a positive differentiable p.d.f.,

Pfanzagl (1975) has shown that the sample quantile is efficient among the class

of all translation-equivariant and asymptotically median unbiased estimators.

However, Re•is (1980) has demonstrated that quasiquantiles-may perform con-

siderably better than sample quantiles when comparisons are based on the notion .

of deficiency as introduced by Hodges and Lehmann (1970).

Kaigh and Lachentcuch(1981) propose and study another alternative to

L the sample quantile in an attempt to improve the precision of the estimatior.

of population quantiles. The alternative estimator is a U-statistic with

I representation as a linear combination of order statistics and may be viewed

as a "generalized sample quantile" obtained by averaging a sample quantile

estimate over subsamples of the complete sample. Although subsampling schemes

are common and, in fact, our generalized sample median was obtained first by

Yanagawa (1969) as a robust estimator of location for symmetric distributions,

the procedure provides a natural local "smoothing" of the entire sample

quantile function. In a related study Harrell and Davis (1981) consider a

similar quantile estimator obtained through application of the bootstrap.

In Section 2 we provide the introduction of the alternative estimator

and a discussion of its elementary properties; in Section 3 we determine

the asymptotic distribution of the alternative estimator as an application of

known results concerning linear combinations of order statistics and U-statistics;

in Section 4 we employ both analytic methods and Monte Carlo results to compare

the alternative estimator with the conventional sample quantile estimator;

finally, in Section 5 we jackknife the alternative estimator to obtain in-

terval estimates for population quantiles.
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2. The Alternative Estimator K For a fixed integer k satisfying
- ~ _______ ((kil-Pl~:k;n Frafxd nee stsyn

1 < k < n, consider the selection of a simple random sample (without replace-

ment) from the complete sample XI, ... , Xn and denote the ordered observations

in the subsample by Y1:k;n' -'" Yk:k;n An elementary combinatorial argument

shows that for each integer r satisfying 1 < r < k

,- "r:k;n a Xj:n) - ( n-P lr)'(.n),' r < J r + a - k

For 0 < p < 1 a sample quantile estimator of p based'on the observations in a

single subsample would be Y[(k+l)pj:k;n" We define the alternative quantile

estimator K to be the subsample quantile averaged over all (n) sub-
j(k+l)p] :k;nk

samples of size k so that

r+n-k(2.1)(Kr* )( )/(k1x, r - ((k+l)p].
[2.1) K[(k+l)p]:k;n jZ[r - k kJ:n' r

The estimator of (2.1) is obviously translation-equivariant (i.e.,

K[(k+l)p]:k;n(Xl+C, ... , Xn+C) v K [(k+l)p]:k;n (X19 ... , Xn) + c) and satisfies

K t(k+l)p]:k;n - E(Y t(k+l)p]:k;n X1 , ... , X n) with expectation vr:k(F), the mean

of the r - [(k+l)p] th. order statistic in a random sample of size k from F.

From the development through averaging the symmetric kernel f*(x1 , ... , Xk) -

Xr:k over all subsamples, it follows that K((k+l)p]:k;n is a U-statistic with

representation also as the linear combination of order statistics given by (2.1).

In a specialized application to reliability theory Takahasi (1970) also con-

sidered the U-statistic above as an estimator of its mean u r:k(F). The weights

which appear in the summation of (2.1) correspond to the probability distribu-

tion of a negative hypergeometric random variable representing the number of indi-

vidual selections (without replacement) required to obtain a total of r "special
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items" from a dichotomous population consisting of exactly k "special Its" . .....

and n-k "ordinary items". The mean and mode of the negative hypergeometric

distribution appearing in (2.1) are r(n+l)/(k+l) and [(r-l)n/(k-l)] + 1, res-

pectively, which indicate a weight function centered appropriately about [np].

A sample quantile is not in general an unbiased estimator of the cor-

responding population quantile, although (1.1) shows that any bias becomes

negligible with increasing sample size. Appeal to a monotonicity principle

would suggest that the subsampling scheme provides an estimator K[(k+l)p]:k;n

of &p with bias magnitude exceeding that of the conventional estimator

X:n' However, it would seem plausible also that the averaging pro-

cedure might result in a reduction of sampling variability adequate to de-

crease the overall mean square error of estimation.
I

Subject to the obvious constraint 1 < k • n, the assumed subsample size

is arbitrary and the choice k - n in (2.1) gives K[(n+l)pJ:n;n - X((n+l)p]:n

so the statistics defined by (2.1) form a collection of "generalized quaatile

estimators" which includes the usual sample quantile. As an illustration

consider a complete sample size n - 99 and the estimation of Permis-

sible subsample sizes are then k - 19, 39, 59, 79, 99 with corresponding

(4(k+l)pj - 1, 2, 3, 4, 5, where for convenience we have chosen to avoid the

use of fractional order statistics (see Stigler (1977)) and adopted a con-

vention that a quantile & is estimable from a sample of size k only if
p

(k+l)p is an integer. The estimation problem becomes that of choosing the

subsample size appropriate to the minimization of E(K[(k+l)p]gk;n - Ep)2

Althoagh the theory of U-statistics as developed by Hoeffding (1948) would

suggest a choice of the minimal permissible subeample size to provide a ker-
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* nel estimator of minimum variance, the substitution k-i in (2.1) provides the

sample mean as an estimator of a possibly asymmetric population median. Ob-

*! viously the minimization of mean square error of estimation requires consi-

deration of bias magnitude as well as sampling variance.

Finally, since the exact distributional properties of U-statistics and

of linear combinations of order statistics typically are intractable, our

subs-quent analyses are concerned with asymototic development and simulation.

Although the robustness properties of an averaging process are suspect, in

practice the estimator K[(k+l)p]:k;n is computed from a trimmed sample and is

quite robust provided that care is exercised to avoid the sample extremes.

3. Asymptotic Distribution of K[(kH )p]:k;n@ Our immediate objectiv' is to

obtain asymptotic distribution results for the statistic Kr(k+1)p :k;nl to
0-'?

facilitate comparison of the estimators introduced in Section 2. Theorem 3.1

requires a fixed subsample size k whereas theorem 3.2 considers a subsample

size increasing in proportion with the total sample size n.

For a fixed subsample size we first formulate and then apply the results

of Hoeffding (1948). Suppose X1 , ... , Xn are i.i.d. r.v.'s and let f*(Xl, ... , Xm)

be a real-valued symmetric statistic with mean n and second moment

Eff*(XI, ... , Xm)]2 < =.The corresponding U-statistic for q is then

Un(Xl, ., n) (M E f*(Xl, ... , X )C wmn

where C indicates that the summation is over all combinations {a, a

of m integers selected from (1, ... , n). Then Un has expectation n for all

n > m and

(3.1) n½(Un-n) -N(O, m2 ) 1
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where

varEE(f*(X1,, " )'x").

Moreover, n Var Un is a decreasing function of u with limit m2;l.

Let r - [(k+l)p] and recall now from Section 2 that K[(k+1)p]:k;n is the

U-statistic for u r:k(F) corresponding to the kernel f*(x 1, ... , xk) Xr:k*

Denoting the beta p.d~f. 'mr:kW ( a - /B(rk-r+l)lxr(i-x)r 0 - x < 1, we write -

the expectation as
I

(3.2) Ur:k(F) - G(u) mr:k (u) du.

Employing the formula for the variance of the projection of an order statistic give)

in lemms 2 of Stigler (1969) yields a convenient representation of the asymptotic

variance kVar E( -kiX) as

(3.3) oa.k(F) - I (u^v-uv)G'(u)G'(v)mmk(U)m.k(v)dudv.

Application of (3.1) provides

THEOREM 3.1. For 0 < p < 1 and k fixed,

½ D
n (K[(k+l)p]:kn- 1 Mrk(F)) D N(O, 2k(F)) as n -, where r = [(k+l)p].

Although not presented here, a multivariate extension of theorem 3.1 follows easily

from further results in Hoeffding (1948). The univariate development given here

appears also in Takahasi (1970) and it should be noted that the conclusion requires

only the existence of the variance of the rth. order statistic in a random sample
of size k from F. Also, n Var K decreases with limt o2k(F) of (3.3).

K[(k+1)p]:k wih rzk

For the case of a subsample size increasing in proportion with the total

sample size we formulate the results of Bickel (1967). Let m J,n , 1 c n j n,

n > I be a double sequence of constants such that m J,n 0 0 for J .1 8n, j (1-6)n
nfor some 6 > 0 and cz'nsider the statistic Tn j ~l m K n If there exists

- ÷M(u)
M(u) of bounded variation on I - [1, 1 - 3) such that Mn (u) j•nu mj,n

Definition: uAv - min(u,v).
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on a dense set of I and that sup V0 (Mn) < - (Vl denotes total variation), then
n½T D

(3.4) n (T - E(Tn)) D N(O,c 2 (M,F))

where

02 (M,F) = f1 JI(u.v-uv)G'(u)G'(v)dM(u)dM(v).
0 0

Next we apply the above version of theorem 4.1 of Bickel to the statistic

K [(k+l)pl-k;n when k/n - X, 0 < X < 1, as n 4.

The negative hypergeometric probabilities given in (2.1) specify the pro-

bability distribution of a random variable Ur:k (n) corresponding to the rth.

order statistic in a simple random sample (without replacement) from the finite

population {J/(n+l):l< J. _ n). The mean and variance of Ur:k (n) are respec-

tively r/(k+l) - p and r(k-r+l)(n-k)/(k+l) 2(k+2)(n+l) - 0 as k,n - •. It fol-

lows by Chebyshev's inequality that U r:k(n) converges in distribution to the

unit mass assigned to the point p. Application of (3.4) gives

THEOREM 3.2. For 0 < p < 1 and k/n -X , 0 < X < 1, as n -

½ -~p D a()
n (K[ (k+l)p] :k;n- F, N(0, a

where

o2(M) - p(l-p)/f 2 (4) p(-p)C'().
p p

Although not developed here, it follows from theorem 4.3 of Bickel (1967) that

the conclusion above holds whenever k tends to infinity with n, provided that

F has finite second moment and that &p is replaced with U[(k+l)p]:k* Since under the

conditions of theorem 3.2 it even can be shown that n½(Kc(k+l)p]:k;n- X[(n+l)p]:n)O 0

with probability one, the rationale for inclusion of Bickel's results and theorem 3.2

is the demonstration that, in a certain sense, the generalized sample

quantile is efficient in the nonparametric models discussed in Section 1. In

"addition, the development of theorem 3.2 illustrates the applicability of re-
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suits concerning linear combinations of order statistic to the alternative

estimator. Under more restrictive hypotheses, Bickel's theorem 4.3, in fact,
Sj-1tn-jl(•)(j/n andUr (n)

Swill provide our theorem 3.1 since n ( k-r k r:k :M'' and Ur(n

has asymptotic beta distribution for fixed k as n * .

4. Comparisons of the Quantile Estimators K Although preferences
________ ______ _______ (k+l)pl1:k~n'

among competing estimators often are established through extensive Monte Carlo

studies, our treatment here is more in the spirit of the "small sample asympto-

tics" of Stigler (1977). However, some simulation results are included primarily

to evaluate the adequacy of certain analytic approximations. It is of interest

that the limited small sample numerical comparisons in Yanagawa (1969), (1970)

suggest merit of the generalized sample median in the specialized application as

a location estimator for symmetric distributions.

As an initial step in the comparisons we consider the asymptotic variances

of the estimators X[(n+l)p]:n and KI(k+l)pj:k;n. The equality of the variances

given in (1.1) and theorem 3.2 indicate asymptotic equivalence so we consider

:2 (F) of (3.3). First we investigate some specific distributions which per-
r:k

mit explicit calculation and provide some insight regarding the behavior of the

alternative estimator. In addition, the examples supply motivation for a sub-

sequent approximation and its limitations. Although the result probably is

available elsevhere, we include details of the calculation of 0 2 (F) for the
r:k

uniform distribution since the derivation is probabilistic and possibly new. In

the other example we simply list ao (F) of (1.1) and ar2 (F) of (3.3), the de-
p r:k

rivations being quite similar. We assume throughout that (k+l)p and (n+l)p are

integers.

EXAMPLE 4.1. Standard uniform distribution. Let F(x) - x, 0 - x < 1, G(u) u,

0 < u < 1, • - p. From (1.1) we obtain

(4.1) 0 2(F) - p(1-p) - r(k-r+l)/(k+l) 2 .
P 294
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From (3.3) we have

J(4.2) CT(F) 2 u(l-v)m k(U)m k(v) dudv.

An easy manipulation of the integrand provides

C2 (F) f [r(k-r+l)/(k+l) 2.

2 1 1 l f/B(r+l, k-r+l)B(r,k-r+2)] ur (1-u) k-rvrl (1-v) kr+idudv.
o0j

The integral above admits an interpretation as the probability that a random

variable Vr+l:k+l distributed as beta with parameters r+l, k-r+l is less than

a random variable W r:k+ distributed independently as beta with parameters
r,k-r+2. Consider two independent random samples, each consisting of k+l ob-

servations from the continuous uniform distribution on (0,1). Then it follows

that Pr(Vr+l:k+l " Wr:k+l) may be computed as the probability that the (r+l)st.

order statistic in the first sample is less than the rth. order statistic in

the second independent sample. A combining of the two independent samples and

an elementary combinatorial argument regarding the sample origin of the smallest

2r observations shows that
r-1r- .k+l. k+l M 2k+2

Pr(Vlk+l Wr:k+l)= x 2r-x /• 2r
,c-O

Symmetry of the hypergeometric distribution indicated above provides

Lk+l. k+l 2k+2r(r+l:k+I < r:k+I)l () I r )(r ) 2r )"

It follows that

(4.3) 02 (F) - [r(k-r+l)/(k+l) 2 ][1 - (k+l)(k+l/M 2k+2 )] < k rV~ ~ r r 2r ),1~k<r

From (4.1) and (4.3) we obtain

- 1-k+l k+l 2k+2 -

(4.4)0

295

.1



L:- -" -

Here both estimators are unbiased for Ep, so it follows from (4.4) that
p

K (has (asymptotic) mean square error less than that of

IFl n for any allowable subsample size if the population c.d.f. is that

of the uniform distribution on (0,1).

v EXAMPLE 4.2. Standard logistic distribution. Let F(x) (,+

- < x < cc G(u) - loglu/(l-u)], 0 < u < 1, - iog<pE(l-p)E

Then

o2(P) - l/p(l-p) - (k+l) 2/r(k-r+l).
IP

02 (k-1 k-1 2k-2

EXAMPLE 4.3. Standard exponential distribution. Let F(x) = 1-e

0 < x <, G(u) - -log(l-u), 0 < u < 1, ýp -log(l-p).

Then

U2(F) - p/(1-p) -r/(k-r+l)
P

02:k(F) - [r/(k-r)][1 -( k X)(2rk)], 1 < r < k.

EXAMPLE 4.4. Standard power function distribution (½). Let F(x) - x
0 < x c 1, G(u) - u2 0< u p 1, 2.p 2

Then

02(p) - 4p 3 (1-p) 4r 3 (k-r+l)/(k+l)
4

P

2 2 2
02 (F) a (4r (r+l)(k-r+l)/(k+l) (k+2)2]r:k

[(1 . k+2)/42k+4., < r k.
-r+l 'r+l 2r+2

Although many standard distributions such as the normal do not possess
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inverse cumulatives which permit calculation of (3.3), the use of Tukey's

lambda distributions (see Joiner and Rosenblatt (1971) and Ramberg and

"Schmeiser (1974ý can provide suitable approximations. However, as an alter-

native approach we observe instead that the examples presented above suggest

an approximation of a2:k(F) adequate at least for qualitative purposes. As

our primary objective is to ascertain the behavior of the alternative esti-

mator over a large class of "well-behaved" distributions, we implicitly as-

sume throughout the necessary smoothness conditions on the inverse c.d.f. G.

Computation of the variance ratios ., the preceding examples suggests

that for r,r-k, and k of moderate size

(4.5) o2 (F)/O 2  (F) = [1- (k+• k+l 2k+2 - I
(45)p r:k L r X rM 2r A- > 1.

NOTE. Examination of o2 k(F) in examples 4.2 - 4.4 indicates the importancer:k

of the qualifying statement "of moderate size".

Now the respective mean and variance of the beta density mr:k are r/(k+l) = p

and r(k-r+l)f(k+l) 2(k+2) - p(l-p)/(k+2). Assuming that the continuous p.d.f.

f is relatively constant near &p, the approximation G'(x) = G'(p) in (3.3)

provides

ar2 (F) =_[G'(p)] 2 2tfvoo u(l-v)m (U)m (v) dudv.
r:k 0 o r:k r:k

The integral above is precisely that of (4.2) computed in the uniform case of

example 4.1 so we obtain

F2 2 k+l k+l 2k+2
r:k(F) • P(1-)G'p][r[1 - r r M r

(4.6) = - (k+l X(k+l M2k+2]

p r r 2r )]' r - [(k+l)p].

The preceding presents some justification of (4.5) and the resultant implication
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j that the ratio of the asymptotic variances o2(F)/a0.k(F) is "approximately

independent" of P for r, r-k, and k of moderate size. Another consequence of

(4.5) is the suggestion that the ratio of the asymptotic vari-

antes decreases to 1 with increasing subsample size.

To investigate the adequacy of the approximations of theorem 3.1 and

(4.5) we performed 10,000 simulations of median estimation for seven symmetric

distributions based on a complete sample size n - 99 and subsample sizes

k - 9, '9, 29, 39, 79. The results appear i- Table 4.1 and are qualitatively as

predicted and quantitatively in quite reasonable agreement wiith (4.5)(and the

results of examples 4.1 and 4.2).

Recall now that the formulation of theorem 3.1 provides an estimator of

p which is asymptotically biased in most cases. The simulations of Table 4.1

were selected to avoid confounding bias considerations (both estimators are

unbiased for the medians of these symmetric distributions) so that the theo-

retical variance ratios equal the theoretical mean square error ratios. In

the more general case, a decrease in variance by the subsampling scheme can

be insufficient to achieve the desired reduction in mean square error of es-

timation. It is clear then that asymptotic bias magnitude should be considered

in the evaluation of the alternative estimator.

For this objective, ignoring all but the first three terms of a Taylor's

expansion of G in (3.2) gives

r:k( - p = p(l-p)G''(p)/2(k+2)

which in conjunction with (4.6) provides the approximate mean square

error
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MSE:k(F) a k(F)/n + [Pr:k(F) 2 2

:"f 211 k+1 k+l 2k+2•.! = ~~p(l.p)[G,(p)]2[l . ( 1) • ;/

+ [p(l-p)G"(p)] 2 /4(k+2) 2. r - [(k+l)p].

Similarly, X[(n+l)pl~n has approximate mean square error

.SE M(F) a 2 (F)In + [p[(n+l)pl:n(F) - tp12
p p

p(l-p)[G'(p)] 2 /n + [p(l-p)G"(p)] 2 14(n+2)2*

It follows that for moderate rjr-k, and k and large n

(4.7) MSEp(F)/HsE (F)M {1 + p(1-p)[G''(p)/G'(p)j /4n)
p r:kk+1.,k+l..2k+2.2 2-

[i - (M r)Akl)/ + n p(l-p)[G''(p)/G'(p)] 2 /4k 2 }"I r [(k+l)p].
r r 2r

If k is not too small, both bias terms in (4.7) are negligible and the remarks

immediately following (4.6) apply to mean square error as well.

Finally in Table 4.2 we present further simulation results for both sym-

metric and asymmetric distributions for n - 99, k - 39, k - 79, and p varying

from 0.05 to 0.95. The results are in quite reasonable agreement with (4.5)

(the bias terms in (4.7) are indeed negligible) for 0.2 < p < 0.8. The alter-

native estimator performed better than the conventional estimator for all de-

ciles of all distributions except the heavy-tailed double exponential and Cauchy

for k - 39, 79. Problems were encountered for extreme quantiles of the power

function, exponential, logistic, and normal distributions, also. The corres-

ponding values of r were 2 and 38 (not moderate) indicating difficulty with

the accuracy of (4.5) and/or bias magnitude. However, it should be noted that

the intent of Table 4.2 is to suggest the existence of a single subsample size

k providing simultaneously better estimates for a spectrum of quantiles over a

class of different distributions, and a larger subsample size would eliminate

the aberrant cases. In practice different subsample sizes probably should be

employed for estimation of different quantiles.
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5. Quantile Interval Estimation. The asymptotic results for the point estimators

X[(n+l)p]:n and K([(k+l)p]:k;n may be employed to obtain large-sample confi-

dence intervals for population quantiles provided that sample estimates may

be obtained for the asymptotic variances of (1.1) and (3.3). Here we consider

application of the jackknife procedure to obtain sample variance estimates of

the generalized sample quantile, although an alternative method using the

sample quantile function and tables of incomplete beta functions is described

by Maritz and Jarrett (1978).

First we develop briefly the jackkknife estimator of an unknown population

. parameter e based on a random sample X1 , ... , X . Let iO be the estimate of
n n

*e based on all n observations and let 8 -1i , ... , n, be the estimate

obtained by deletion of the ith. observation. The pseudo-values are defined

by

n* ;o -(n-1) •ili-,.,n
0-nn -n-l ~,..

and the jackknife estimator of 6 is then
n _

ernIei %/n.

A sample estimate of the variance of the jackknife estimator is given by

2S? - S/n where

2 n 2- _Zl (ei _ 8)2/ (n-1).

2
Under certain conditions (e.g. Miller (1964))S? is consistent and the

standardized statistic (6 - 0)/Si is asymptotically standard normal. The

jackknife estimator may be employed then as a pivotal statistic for robust

interval estimation of e.

Although the sample quantile represents a classic failure of the jackknife

procedure (see Efron (1979)), we show that the generalized sample quantile

estimator "Jackknifes well" and the asympototic behavior of the statistic
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Kr~k~ under the jackknife follows easily by application of results of Arvesen,

(1969) concerning U-statistics.

Deletion of the ith observation provides pseudo-value 'gr:k;n - (n-l) Kkr~k~nr:k;n-l,

"where the weights required for the computation of Kar
r:k;n--na. n

r-1 X' nc-r kn-j1 , ... , r+n-k-1. Since Kr:k;n is a U-statistic the

pseudo-values provide average K and sample varian8e 2 given by
k2 n 2

5 (0-1) Z (Ki -K 2
r:k;n - 1l r:k;n-l r:k;n

Application of Arvesen's theorem 6 in conjunction with our theorem 3.1 provides

THEORd• 5.1. For r and k fixed, as n -

r:k;n r:k (F)

½ D
ii) n (Kk - •r:k (F))/Sr~k;n * N(O,1).

We remark that the results of Parr and Schucany (1981) concerning jackknifed

linear combinations of order statistics will produce theorem 5.1 inder more

restrictive conditions on the c.d.f. F.

The preceding yields an approximate 1-a confidence interval for the popu-

lation quantile &p given by

( ) +r:kn ± 0' (1-a/2) Sr:k;n/n4, r - [(k+l)pl

where * is the standard normal c.d.f.

To investigate the validity of (5.1) for small and mo4erate sample sizes,

additional simulations were performed for the uniform and exponential

distributions. Since the number of distinct pseudo-values obtained is n-k+l,

the standard normal percentage points in (5.1) were replaced by those of the

t distribution with n-k degrees of freedom. Results of median interval

estimates for the uniform distribution based on various sample sizes appear
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in Table 5.1 while results of other quantile interval estimates for the uniform

and exponential distributions based on a single moderate sample size appear

in Table 5.2. Taking into account Monte Carlo variability, there is only

small deviation of the empirical confidence levels from the nominal levels

even for small sample sizes. Although further simulation studies should be

performed, the results of Section 4 suggest adequate validity of (5.1)

for other distributions as well.
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TABLE 5.1 Quantile Interval Escimation K [(k+l)p]:k;n + tn-k,a/2 S[t(k+l)p]:k;n/n•

Based on 1,000 Simulations.

p - 0.5 Uniform Distribution

Observed Ratio of
Confidence Level Observed Variance

to Mean Jackknife
Sample Size Subsample Size 0.68* 0.95* Variance Estimate

n-99 k-79 0.66 0.92 0.93

k-39 0.67 0.93 1.01

n-49 k-39 0.66 0.91 0.94

k-19 0.68 0.92 1.01

n-39 k-19 0.68 0.94 0.92

k- 9 0.70 0.95 0.95

n-29 k-19 0.65 0.92 0.94

k- 9 0.66 0.93 0.98

n-19 k- 9 0.68 0.93 0.91

*nomina1 confidence level
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TABLE 5.2 Quantile Interval Estimation K[ p / n [n
f(k+l)pJ:k;n - n-k,cL/2 (f(k+l)p]:k;u

Based on 1,000 Simulations.

Uniform Distribution Exponential Distribution

Observed Confidence Observed Confidence
Level Level

p 0.68* O.95. 0.68* 0.95*

0.10 0.65 0.91 0.66 0.92

0.20 0.65 0.92 0.66 0.93

0.30 0.66 0.94 0.67 0.94
0.40 0.66 0.93 0.67 0.943
0.40 0.66 0.93 0.67 0.93

0
0.50 0.67 0.93 0.67 0.93

0. 60 0. 66 0. 94 0. 66 0. 9.5

0.70 0.67 0893 0.67 0.94
0,80 0.68 0.92 0.67 0.93.

0.90 0.67 0.93 0.65 0.94

*nominal confidence level

n-99, k-39
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Abstract. The problem of nonparametric probability density estimation is

considered for higher dimensions. An "onion peel" algorithm is suggested for
3-dimensions. For dimensions of 4 or more, a decomposition procedure is
proposed, which first finds the centers of mass using nearest neighbor tech-
niques, then estimates the density around these centers using fixed mesh pro-
cedures.
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Introduction

There are many reasons for the possible failure of standard parametric

statistical procedures. Among these, the problem of tailiness beyond that

in the model assumed has attracted the most interest. As one example, for

some years now, rank tests have been used as an alternative to likelihood

ratio tests 1 71. More recently, notions of robustness as delineated in the

Princeton Robustness Study have moved to center stage in statistical inves-

tigation [1 1. Both these sets of techniques tend to assume symmetry and

unimodality of the underlying distributions. Both are somewhat tied to one

dimensional probability densities,

A second type of pathology, and the one to which we shall address our-

selves in this paper, is departures of the underlying distributions from

unimodality and symmetry. In this case protection against tailiness will be

of little avail. Procedures are required which will be robust against the

unexpected "in the center."

Of such techniques, the oldest is the histogram, which existed in crude

form as long ago as 1662 1 4 1. The "shifted histogram" of Rosenblatt 1121

gave greater efficiency and flexibility than those of the histogram. The

still more general kernel estimates of Parzen i111 have found wide applicabil-

ity

Another approach has been that of series estimates [ 6, 15J. These

have a loyal group of users but do not presently enjoy the popularity of

kernel estimates.

A suggestion of Good and Gaskins 1 31 to pose Bayesian estimation in a

function space setting for density estimation (with a prior measure on the

space of densities) was successfully pursued by de Montricher fiol. However,

A
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the practical difficulties of algorithmic implementation have given

preference to the related concept (also suggested by Good aud Gaskins) of

maximum penalited likelihood density estimation 1 14, 15 1. This algo-

rithm has been included as a standard routine in the widely disseminated

DOSL package [5 ].

The three categories of density estimation--histogram (including the

shifted), series, and maximum penalized likelihood-- are by no means

exhaustive of the techniques robust against the possibility of multimodality,

but are the most commonly used. Each of these can be generalized to several

dimensions. The technique used in this paper, however, is based on the

shifted histogram.
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The nonparametric estimation of densities in higher dimensions presents

the investigator with difficulties not encountered in the well explored one :

dimensional case. If we use evaluation on a standard fixed mesh grid, we

have the problem of exponentially exploding cost of computation with

increasing dimension. Moreover, with kernel (shifted histogram) techniques

we face the empty space problem-- namely the vast majority of grids will

contain no data points. So a great deal of our computation will be

effectively wasted. A preferred procedure, then, would be to use a variable

grid which increases in size in regions of low density but decreases in

regions with many data points.

This leads us to the k-nearest neighbor algorithm [2,81. To delineate

it, we let

k I

(1) f(x) N V (x,d(x,k))

where d(x,k) = Euclidean distance to the kth nearest data point from x

V (x,d(x,k)) = the volume of the m-dimensional sphere centered at x
m

with radius d(x,k)

N - the sample size.

We note that as k increases, the variability of our estimate for f

decreases, but At the expense of increased bias. Sufficient conditions for

consistency of the estimate in (1) are (p. 8 4 , [151)

(2) lim k

lim k/N = 0.
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For density estimation problems in 1, 2, or 3 dimensions, it is an easy

matter to choose the appropriate k interactively.

As yet , no completely automated rule for the selection of k is

available, although an iterative procedure developed for fixed kernel Qidth

selection (131 appears well suited co this task using the formula for the

mean square error of nearest neighbor estimates given in (91- .For- IO

dimensional densities (1, 2, or 3), it is not difficult to choose k inter-

actively. We simply start with k large-- say N/2-- and sequentially

redace it by powers of 2 until the graphs of the estimated density begin

LZ
to display high frequency wiggles. Then we return to the preceding value

of ki.

It is interesting to note that it is the graphing of f (or some

machine alternative to graphing) which is the greatest problem in density

estimation in higher dimensions. The use of a data based "grid" does not

liberate us from the curse of dimensionality. As an example of this point,

suppose we have a sample of 300 from a 5 dimensional density. An investi-

gator who estimated the density using fixed mesh (20/dim.) would be

6
required to evaluate f at 3.2 X 10 points. The nearest neighbor

advocate might argue with some validity that we could make do with

evaluating f only at the 300 data points. The argument for this attitude

might be that he is interested at points where f is large-- and these are

most likely to be near the data points. But what sense can he make of

Mf(x ); i = 1,2,...,300)? He must somehow exploit the assumed continuity of

f to "get a picture" of it. In one dimension, the eye itself would perform

this task from a simple plotting of tf(x1 ); i = 1,2,...,300). In two

dimensions, one would need to use some care in selecting the appropriate

graphical technique (2 dimensional contour plots, 3-d Calcomp plots, etc.).
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In 3-dimensions (which, due to the added dimension from f, is really a

4-d plotting problem), one will have to be somewhat clever. And in higher

dimensions, where our essentially 3-d perceptions fail us, what to do is

unclear. There is, unfortunately, a vast difference in knowing the functional

form of f and simply knowing it on a regular (let alone an irregular) mesh.

* A knowledge of f on the continuum would return us to the happy world of para-

metric probability densities (a low dimensional problem). A knowledge of

f at a discrete number of points leaves us with a problem of high

dimensionality. Of course, we shall not even know f at a finite number

of points-- only an estimate f. But from a practical point of view,

inferential difficulties would remain-- even if we knew f exactly at a

discrete number of points.

Let us consider the following question: would we rather have a random

sample of 300 from our unknown 5 dimensional density f or would we rather

know f precisely at 300 points selected from a uniform distribution over

the 5-dimensional hypercube in which we know a-priori the bulk of the mass

of f is imbedded? A little thought reveals that the first of the two

cases is the more informative (though we would surely pick the second for

the 1-dimensional problem) on those regions having the greatest density.

This again argues against fixed mesh width shifted histogram estimation and

in favor of nearest neighbor techniques in higher dimensions.

But it also points us toward the desirability of focusing on local

centers of high density. Let us consider a three dimensional ballistics

data set. As a first step we translate the data to the sample mean and

rescale it so that the marginal sample variances are equal. We now consider

the estimation of f in the three planes MV = 0, 4 = 0, e = 0. We show,

in Figure 5, the procedure whereby this estimation is carried out. Some
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important but mathematically trivial computational savings can be made. For

example, suppose we have determined the distance d(Q,P 1 ) of a point Pl,

with coordinates (x1,y a1 ) from a sample point Q with coordinates

(xy,t). Then going to the next point P2 (x1 + 6,y 1 ,z 1 ) in the grid, we

have the simple update formula:

(3) d2(QP d d2 (QP 1 ) + 62 + 26(x - x1 )

The gain in computational efficienty using this simple update formula is

of the order of 2 to 3 (note that if we had not used a regular grid, this

saving would not have been available ).

Next, we note that if we use (1) for estimating f(x 1 ) for a

predetermined k - pN it is not essential that we use precisely this value

of k in the formula, as long as we know what k is. Consequently, we

select randomly a subset of the N data points of size M . 2r (with,

typically, r = 6 or 7). Then we find the distance to the 29th nearest

s r
neighbor to the grid point x1 where 2 /2 r- p. Call this distance d.

Returning to the full data set, count the number of sample points at least

as close to x 1 as d - let the number of such points be called k'(-k).

Then we use the formula

k ' I.
fI 1 V (x id)

The information loss caused by this latter "pilot study" algorithm is

negligible, while the improvement in computational efficiency is of the

order flog2 N/log 2 MI.

For each of the three planes, we now interpolate to obtain the

(conditional) iso-f level curves. (Such curves for Mv 0 are given in
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Figure 6.) We note that such curves will enclose less and less area as f

increases. Connecting points on the level curves for a fixed value of f

gives us the level surface (with MV coming out of the page) in Figure 7. We

next let f increase to give us the level surface in Figure 8. We continue

to increase f until first one bump, then the other disappears. In using

the "onion peel" procedure for the present problem, it was noted that at the

f levels of disappearance of the two bumps, the MV values were identical -

thus indicating only that only one modal MV value is appropriate. Naturally,

we might find it desirable to make one or two additional sets of onion peel

plots in determining the coordinates of the modes (each corresponding to one

of the two angular coordinates being used as the coordinate coming out oi the

page), since the "out of the page" coordinate is not as easily dealt with as

the two on the page. In the example at hand, we found two modes with coor-

dinates: MV = 722.51 gm/s, I = -8.15* and e = 24.18%, 45.500.

It is interesting to note that for the present example, although

we have used the nearest neighbor variant of the shifted histogram procedure,

we have used a fixed mesh grid to determine where the density should be

estimated. One would be justified in asking the question: woulo we have

not have done as well to stay with fixed mesh estimation as well? The

answer is, "yes, for the present well behaved data set." In general, if

we estimate f at a point in its support, we are implicitly assuming it to

be significantly greater than zero at that point. And, if such be the

case, the many practical advantages of a fixed mesh may be decisive.

In general, the greatest value of a variable mesh should be in pointing

to those regions of relatively high density. Once we have determined the

rough boundaries of these regions, we might do well to use a tuned fixed

mesh estimation on each of the regions. Thus we would be using
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(4) f +
J=l

where-(x)-O for x.E R

So we are advocating a kind of decomposition into regions of high density

using k-nearest neighbeor techniques followed by a fixed (for each region)

mesh estimation of the density in each region.

Although we are still working on this two step algorithm, we can

already indicate some prelimary results. First, we start on the fringes

of the data set. Then taking a data point as the first iterate xi, we let

(5) x - Ave(k nearest neighbors of x.
n sn-l

Experience shows that, at least in dimension of 3 or less, the algorithm

in (5) will stop (or cycle) prematurely - i.e., before a bona fide local

maximum of f has been essentially reached. However, it generally brings us

into the domain of attraction (for Newton's method) of a local maximum. So

then, a two stage averaging and Newton's method algorithm appears to work

. well for finding the local maxima of f.

Following the location of centers of high density, we can investigate

estimation around each locally. This might involve, for example, a pre-

liminary investigation using nearest neighbor techniques to determine the

contours of f values 1/4, 1/8 and 1/32 o1 that at the local maximum. In

many cases, it may be possible to use parametric techniques for some of the

local densities. in others, a fixed mesh technique - e.g., shifted histo-

gram or maximum penalized likelihood- might prove useful.
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F tdURE 2

N = 1380

k - 300 (too large)
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FIGURE 3

N - 1380

k =150 (about right)
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F1{CURE 4

N - 1380

k - 30 (too small)
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TESTABILITY OF LINEAR HYPOTHESES IN NORMAL LINEAR MODELS

Gerald S. Rogers

New Mexico State University

Las Cruces, New Mexico

ABSTRACT. Let a normal linear model be represented by Y X X& +
e. It is shown that the usual F statistic derived from the

likelihood ratio can be used to test the hypothesis He O 0 in-

dependently of any conditions of estimability provided that

p(X') + p(H') - p(X' ,H') is positive. (p denotes the rank of a

matrix.) The inherent non-uniqueness leads to the definition of

an effective hypothesis: X8 in the range space of X(I - H+H);

(+ denotes the Moore-Penrose generalized inverse.) It is shown

that this hypothesis has an estimable form TXe - 0 and that the

procedure is equivalent to a previous definition of "effective".

I. THE LIKELIHOOD RATIO TEST. A basic linear model is

representable by Y - X& + e where Y is n by 1, X is a given n by

p matrix with rank r 4 p < n, 9 is p by 1, e is an n by 1 normal

random variable with mean 0 and covariance matrix a 2 n

If the vector 8 is an arbitrary element of the p-fold

cartesian product with real components, say 9 e 0, the parameter

space is A - [(( o0 ): 9 6 0 , 0 2 > 0). The hypothesis that 9 is

22
2 > 0). Denote a likelihood function by lik(A ,Y) and the

ordinary Euclidean norm by oi . A generalized likelihood ratio

test of the hypothesis is based on sup lik(A ,Y)/sup lik(O ,Y)

which reduces to min mY -x 2 / min Ny - X92
eC¢ eco

Notation: for a matrix W, R(W) is the column range space;

N(W) is the column null space; p(W) is the rank; W+ is the

Moore-Penrose generalized inverse; tr(W) is the trace when W is

square. dim V is the dimension of a vector space V.

Let H be a given h by p matrix of rank h ( p. Suppose that-

the hypothesis is He- 0; that is 9 f 0 - N(H) - R(Q) where Q
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I - H+H. Note that 0 is the direct sum of N(H) and R(H'); also,

H+H and Q are symmetric idempotent matrices. Then,
24SSE - min mY - Xe9 - Y'(I - XX+)Y

6E0

SSH -. min NY - 2 m Y XQ 2 -Y(I - XQ(XQ)+)Y

(These minima are done neatly in Albert (1972), pages 30-36.)
++Now A - XX, B - XQ(XQ)+ , I - A , I - B are also sym-

metric idempotent matrices. It is easily seen that AS - 8 from

which it follows that BA = 8, A - 8 is symmetric idempotent and

(A - B)(I - A) -0. "Large values" of SSH/SSE correspond to

"large values" of (SSH - SSE)/SSE - Y'(A - B)Y/Y'(I - A)Y. The

quadratic forms in this numerator and denominator ar a2 multi-

ples of independent chiquare random variables with t - p(A - B)

and n - r degrees of freedom respectively. The non-centrality

parameters are e'X'(A - B)Xe 8 G'X'(1 - B)XO and 9'X'(I - A)XG -

C respectively. Thus F Y'(A - B)Y/t + Y'(I - A)Y/(n-r) will be

a proper F random variable when t is positive.

The import of the non-centrality parameter is discussed in

section III; the rank condition is examined first.

I1. RANK IN THE FOUR CASES. The basic result is the

THEOREM: Given X n by p, H h by p, let Q - I - H H, A - XX+, B 8

XQ(XQ) Then t - p(A - B) - dim R(H') n R(X') - p(X') + p(H') -

p(X' ,H').

Proof: Both A and 8 are symmetric idempotent matirces and AB - 8

so also BA - B. It follows that A - B is symmetric idempotent so

that its rank is equal to its trace: p(A - B) - tr(A - B) -

tr(A) - tr(B) - p(A) - p(B) - p(X) - p(XQ). As part of their

Theorem 1, Baksalary and Kala (1976) show that p(X) - p(XQ) -

dim R(H') n R(X'). As part of their Theorem 2, they show that

p(XQ) - p(X' ,H') - p(H'). The conclusion follows by substitu-

tion. #

Of course, this is merely a restatement of the standard

result on dimensions of subspaces VI,V 2 : dim(V1 + V2 ) - dim V1 +
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dim V2 - dim V1 n V2  The following four cases can occur; only

the first three cases have been recognized previously.

1. R(H-) n R(X') - (0) iff t - 0 iff A - B. This is the

case in which the error sums of squares are equal and there is

no F test.

2. R(H') n R(X') = R(X') iff R(X') c R(H') iff t - p(X) iff

P(XQ) - 0 iff B - 0 iff X - XH H. Here SSH - Y'Y and the F test

is equivalent to that for testing xe - 0 versus Xe 0 0. Note

that p(X) 4 p(H).

3. R(H') n R(X') - R(H') iff R(H') is a proper subset of

* R(X') (the equality to be considered in 2) iff t - p(H) only if

H - HX X. This is the usual condition that H9 be estimable and

the F test is the common one. Note that p(H) < p(X) . In par-

ticular, this is the case when X has full rank p as in ordi-

nary regression.

4. R(H') n R(X') is a subspace with dimension 0 < t < min

(p(X),p(H)) as in the example below. Within the context of sec-

tion III, the F test is valid.

EXAMPLE Factor one has 2 levels and factor two has 3

levels; there are k observations in each cell and only main

effects are to be considered. Let 0 - (,,c* l2,Pl,02",3)' and

11o011 110 10 0

1 110 01 0100I 1 0 0 0 1 1I 0 0 00

M= 10 11]0 0 H- 0 00 01 0

1 0 1 0 10 0 0 0 0 10[f 10 1 0 0 1
Then X ( (I 1 l)M - M 0 k where 0 denotes the Kronecker

product and 1k is an k by 1 vector of all ones.

'6 33 2 2 2 2/3..-1/3 0 -1/2 -1/2 01
330111 i-1/3 2/30 0 0 0
303111 '0 0 0 0 0 0

X'X - k 2 1 1 2 0 0 (XX)+ 1 -1/2 0 o 1 1/2 0

12 1 0 2 0 -1/2 0 0 1/2 1 0

2 1 1 0 0 2j 0 0 0 0 0 0

329



It is easily seen that H 0 HX+X But columns 1 and 2 of H'

sum to column 2 of M' and columns 1 and 3 of H' sum to column 3

of M'. There are no other such linear dependencies so in this

c ase, dim R(H') n R(X') - 2 < 3 - p(H') < 4 - p(X') #

On page 194, Searle (1971) says that when H 0 HX X , the
rows of H and X'X are linearly independent. The example shows
clearly that this is not true in general: the difference of the
last two rows of X'X is equal to 2k times the difference of the
last two rows of H. In a subsequent publication, Searle (1973)
has discussed other errors and their corrections.

The usual manipulations (as appear for example in Rao and
Mitra (1971) chapter 7) may be used to find the rank conditions

when HG - h 0 0, when there are also constraints GO - g con-
sistent with HN - h and when the covariance matrix is o2 V with V
known. Such details are given in Rogers and Urguhart (1980).

III. THE EFFECTIVE HYPOTHESIS. Note that 8'X'(I - B)X8 - 0

iff (I - B)XB - 0 iff xGe N(I - B) - R(XQ). It is obvious from

the geometry that the generalized likelihood ratio procedure
will lead to this same F whenever a hypothesis projects X8
into R(XQ) whether or not HG is estimable. Therefore, an anomaly
of F is that it is a basis for a test of not one but many

different hypotheses all of which lead to the same effective

tYL22thesis : X8eG R(XQ). (Actually, it is not necessary that H
have full row rank but only that p(H) < p.)

There is in fact an estimable one of these hypotheses as is
implicit in results of Scheffe (1959, page 34). Let T' be an n
by t matrix whose columns generate the orthogonal complement of

R(XQ) in R(X). Since TXQ - 0, TXG - 0 when HG - 0. But TX8 - 0
implies Xe c N(T) which is the orthogonal complement of R(T');
thus XG c R(XQ). Therefore, SSH is the minimum when TXe - 0 of2
NY - Xe8 and the same F is obtained. Obviously, TXe is an

estimable function. Since d'TX - 0 iff T'd is orthogonal to
R(X), d'TX - 0 implies T'd - 0 which in turn implies d - 0; thus

p(TX) - p(T) - t.
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EXAMPLE For the model of section II with k - 1, X M. |
0 0 1 0 0 .410

0 0 0 0 0 0 1 .5
0 0 0 0 0 0 1 -. 5

XQ. .5 -. 5 1 1 0 0 -. 4 0

.5 -. 5 1 0 0 0 .2 .5

.5 -. 5 1 0 0 0 .2 .5

TX; 2.4 2. 0: 1. 12 (90 se"ffci n
0 0 0 0 1 -I

SHSC (Hocking, Speed and Coleman (1980)) used "effective n

model" ,*effective constraint' and "effective hypothesis" in adiscussion of the cell means model. In order to see the equiv- i

- ~alence with the present deflniton of effective,itscovn

ient to use a factorization of the X matrix as is illustrated in

tefollowing

EXAMPLE Suppose that in the model of section I1, observations

' : are available only for cells 12 13 21 23. The corresponding

incidence matrix is 0 1 0 0 0 0

000001U am000 100 0 Let Sbe ablock

diagonal matrix with "diagonal" I k ,1 k2 ',k3 '1k4 representing

(possibly) different numbers of replications in the "observed*

cells. Then the new X - SUM. For the cell means model, v - Me

and Xe - SU - S(v 1 2 ,v 1 3 , V2 1 ,V 2 3 )'. #

In general for a cell means model, E[Y] - SUv - Sv 0 where

o is the vector of means of cells for which there are observa-
tions; say v° is q by 1. Index the cells so that v - (' Yv')'0 m o
where v m is the vector of means of cells which are "missing";

say v m is m by I so p - m + q. Now U takes the form (0 ,I ). For
a hypothesis Ov - 0 (G being g by p of rank g), without loss of

generality, one may use row reductions to write this as

0~i GJ Vi)
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.i -where 00 has maximal rank. The effective hypothesis of HSC is

vo - 0 in the effectv:?, ,.pl Y - SVo + a. By the techniques

* of the present paper, .ni le-tAs to ElY] e R(SQo) with Q0 n -

_o F�or Gv - 0 in tv,' ',- Y = SUv + e, the xelevant sub-

space is R(SýUQ) with Q-- I - G G.
Since G has full row rank, 0+ = 0'(Ge')-. Let (GO')-I be

partitioned appropriately with *rows* C D / J L. It turns out

that UQ has "columns"
C + G-J GmmI -(% 0 +G'J)GO - (0' D + G;.4G O-(• 0 c +0 / 1 - m' + - ' 0

Then from GG+ - G , one gets G0 UQ - 0 and hence QoUQ - UQ.

Now R(SUQ) C R(SQ0 ) iff SQo(SQoB) SUQ - SUQ . (See Rao and

Mitra (1971); *-" denotes any generalized inverse.) Since S+ -

(S'S)- IS' and Q is symmetric idempotent, one form of (SQ 0) is

QOS: SQ OQS SQ0 M SQo oQ Q SQo0  Hence, R(SUQ) c R(SQ ) iff

SQoUQ - SUQ iff Q UQ - UQ which has just been demonstrated. But

Q UQ UQ iff R(UQ) c R(Q ) since Qo - Q Now p(UQ) - p(U',G')
o 0 0 0

- p(0') - p(GM) + q - p(G) - q - (p(G) - p(O mm)) - q - OO)

= p(Qo) so that these subspaces are equal. Thus Y - SUv + e

with Gv - 0 and Y - Svo with G0 v - 0 lead to projection of E[Y)

into the same subspace and consequently have the same SSH with

degrees of freedom n - q + P(G

When Gi - 0 represents a constraint rather than a hypoth-

esis, Y'(I - SUQ(SUQ) +)Y - Y'(] - SQ (SQ ) +)Y - SSE rather
o 0

than SSH. Then in the method of HSC, GmmVm + GmovO 0 0 is

used to eliminate all or part of vim from the hypothesis Hv -

0. Suppose that this produces, HmlVml + Hmo Vo - 0; then row

reductions are used to write (Hml ,Hmo) as n H :Ho
with H0 of maximal rank; their effective hypothesis is H0 v -

+
0. As above (with messier details), SSH - Y'(1 - SUQ(SUQ) )y -

S¥'( - So(SQO) )Y for Q - Q' - I - (G' ,H')(G' ,H')+ and Q0 a

Q. - I - (% ,H%)(G; ,H)+ . Here the degrees of freedom is n -

q + p(G' ,H;) and t - p(G' H;) - p(GO)

IV.REMARKS. For the balance,! model connidered previously
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In facth for an Xc let by p wt first c I . and H )0
Then,-ia" I - H+H has rows 1 0 / O 0 andXQ - (1 ,0) where the

n n

zeroes denote zero matrices of appropriate dimensions. Now I -

S XQ(XQ)+ - I - lnl,/n has rank n - 1, n - 6k, and p(X) - 4. The

numerator in the F test for HO - 0 has degrees of freedom (n -

S 1) - (n - -) = 3 = t

In fact, for any X n by p with first column in' and H - (0,

IplHe - 0 is testable in the same way though HG need not be
estimable; R(XQ) - R(ln ,O) = R(ln)-

In analysis of variance, the columns of X' represent cell

means: t will be positive iff the hypothesis HG - 0 contains

implicitly the hypothesis that (at least) one linear combi-

nation of means of cells for which there are observations is

zero. An example is the TX in section III which yields

"V12 + v 1 3 = 0 and V 22 - V23 - 0

Rao and Mitra (1971) show that varying W arbitrarily in H+

+ W - H +HWHH + generates all generalized inverses H-. Then, Qa

I - H H - (I - H+H)(I - WH) say QW . The results in Bakealary

and Kala (1976) are proved actually for H so p(XQa) - p(X' ,H')

- p(H') - p(XQ) and R(XQa) a R(XQ). The use of "-" usually

simplifies the calculations.

Note that the ranks may be calculated at any convenient

stage in p(X) - p(X'X) - p(XX+) - tr(XX+) and similiarly for

p(H), p(X' ,H). Hemmerle (1979) discusses computer aspects.

This chore can be further simplified by factorization of X as

indicated above. The new X - SUM and p(X) - p(X'X) -

p(M'U'S'SUM) - p(M'U'UM) - p(UM) since S'S is positive defi-

nits. Similarly, for any Q, p(XQ) - p(UMQ), etc. When there are

no missing cells, U is an identity matrix.

The author extends his thanks to Mary Ann Maher, N. Scott

Urquhart and David V. Hinkley for stimulating discussions of

this topic which consequently appears in a different form than

that presented at the Conference.
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THE POIENTIAL UTILITY Or CROSSING A FRACTIONAL
FAClORIAL WITH A FULL FACTORIAL IN THE DESIGN OF FIELD TESTS

Carl T. Russell'
US Army Cold Regions Test Center

Fort Greely, Alaska

ABSTRACT. Typically in the design of a field test, there are more
factors than can be completely tested (in a full factorial) within resource
constraints. Usually one or- two "primary" factors and a few "secondary"
factors are selected as design variables and all other factors of possible
interest are either fixed or ignored. Traditionally, "replicates" of
several overlapping full factorials in the primary factor and one or two
secondary factors at a time are conducted, yielding a design made up of many
side tests and sensitivity tests. This paper presents an alternative to the
traditional design approach in terms of an example which calls for con-
ducting full factorials in the primary factor with combinations of levels of
secondary factors specified by a fractional factorial in the secondary
factors. Potential pragmatic and analytical advantages and disadvantages of
such designs are discussed with emphasis on design flexibility and inherent
hlocking schemes.

1. INIROUUCTION. Within the Army testing community, a test des~gn
for d field test is usually regarded as synonomous with a test matrix, that
is, a matrix identifying combinations of controlled test conditions and the
number of times each combination is to be tested. As a result, both re-
source managers and test operators tend to become infatuated with sample
size: the resource manager often bases judgements primarily on the "number
of replications" while the test operator concentrates primarily on obtaining
the "requisite sample size" in each cell as efficiently as possible. I
think that as statisticians, we should find ways to deemphasize such summary
matrices and emphasize test structure in a manner marketable to the testing
cummunity.

The structure I refer to is blocking. In my experience, all field
tests are conducted in blocks of time or space. Block sizes are usually
dictated by resource constraints, but block contents are most often dictated
by expedient completion of the "requisite sample size," leading to extensive
confounding of possible block effects with factor effects of interest. The
standard request that order of trials be randomized (as much as possible
within test constraints) over the entire test matrix does not give the test
operator the usable systematic statistical advice he should have for test
conduct. Consequently, extensive randomization seldom occurs in test con-
duct, a fact usually ignored during data analysis.

SMuch of the work underlying this paper was done while the author was
a Research Staff Member, Systems Evaluation Division, Institute for Defense
Analyses, Arlington, Virginia.
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I believe that for Riost field tests, the resource structure suggests a
natural structure which can be exploited by the test designer to produce a
fairly small basic test matrix addressing test factors of interest. This
matrix could then be conducted in blocks with both block order and order of
trials in blocks randomized as much as possible within test.constraints.
(Notice that this requested randumi7ation is fairly small-scale and should
fit naturally into test conduct, hopefully yielding substantial actual
randomization and hopefully precluding gross damage in case of non-
rafidontization.) The basic matrix would then be repeated, possibly with some
factors or factor levels deliberately changed in sensitivitytests. This
intuitively simple "basic rtatrix approach" can yield highly structured
designs which not only are expcutable but also permit refined analysis.

*After discussing the traditional appoach to field test design in the
special case where the goal is to compare levels of a primary factor in the
,viesence of several secondary factors, this paper applies the basic matrix
approach to a particular test resource structure involving primary and
soicondary factors. The resulting example illustrates the flexibility and
potential analytic richness inherent in the basic matrix approach.

11. IHE IRADI1IONAL DESIGN APPROACH. Often in field testing there is
C ciirato11abe"-factor of primary interest2 (say, G, at four levels) and
S there are several controllable factors of secondary interest ( say, A, B, C,

Sand 0, each at two levels). The traditional approach then evolves a design
along the following lines. Initially it is determined that a sample size of

* 20 trials per cell is desirable based on the "rule of fingers and toes." 3 A
2• 4 4 full facturial with 20 "replications per cell, however, requires 1280
trials, so the designer shrinks the number of cells by selectively deleting
L-1s to obtain a test design with 20 "replications" per cell made up of
three overlapping 22 x 4 full factorials, A x B x G, A x C x G, and
B x D x G (the suppressed factors are fixed at their low levels). This
yields a natrix of 640 trials which appears in the approved Test Design
Plan. By test date, huwever, Higher Headquarters has determined that re-
source constraints will permit only 320 trials and that two other factors
(previously considered to be fixed) should be varied in sensitivity tests.
Adding two new factors E and F and redistributing the shrunken sample size
yields the test matrix of Table I, which is fairly typical of a design for a
large field test.

2 6-e-M1ustrations in this paper deal with just one primary factor at
several levels. An ohvious generalization regards these levels as combina-
tions of levels of two or more factors making up a full factorial in those
factors.

3 This rule states that anything likely to be operationally significant
is likely to show up in samples countable on fingers and toes and vice-
versa.
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TABLE 1. A Typical Test Matrix Arising From
the Traditional Design Approach

Sec-ondery - Sensitivity 'Primary
Factors Tests FactorGG)

A B C D E F g1  g92  g3  g4

a*1  b, cl d, el f, 9 9- 9 9

f2 4 4 4 4

Se2 f, 4 0 0 J4

4 el f, 9 9 9 9

e 2  f, 4 0 0 4

C2  d, el f, 9 9 9 9

b2  c1l d, el f, 9 9 9 9

d2 el f, 9 9 9 9

a 2  b, c 1  d1  e, f, 9 9 9 9

c 2  d1  el fl 9 9 9 9

Sb2  cn d, e 9 9 9 9

Table entries are the number of trials to be conducted under
each test condition. The order in which trials are conducted
is to be randomized as much as possible within test constraints.

1his design still contains the three overlapping 22 x 4 full factorials
* referred to earlier (now with only 9 "replications" per cell); these sub-

lpsiqgis examine the effects of A, B, C, and 0 and their possible inter-
actions with G in "side tests," each involving 45 percent of all test
trials. In addition, the design contains two "sensitivity tests," each
involving 10 percent of all test trials: the 2 x 4 design F x G (with 4
"replications" per cell 4 and with all other factors fixed at low levels) and
the 23 design D x E x G* (with 4 "replications" per cell 4 , with factor G
restricted to two levels, and with all other factors fixed at low levels).
Analysis would typically consist of analyzing data from each subdesign
spparately, assuming randomization was complete.

A-ina-Tiy-these ',uridesigns call for either 4 or 9 trials per cell and
would probably be analyzed as unbalanced designs; in spirit, however, they
have 4 "replications" per cell.
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The traditional design approach has two main practical advantages.
First, it is accepted: it' is at heart a simple "vary-one-factor-at-a-time"
approach to experimentation, and it is time-proven. Second, it is flexible:
pre-test reduction of resources or addition of factors can easily be accomo-
dated by re-distributing the available sample size, and the lack of detailed
structure hides damage due to data loss during test execution.

However, the traditional design approach has three great statistical
disadvantages. The first two disadvantages are technical: the resulting
designs are inefficient and give main effects biased by (non-estimable)
2-factor interactions. The third and most important disadvantage is prag-
matic: by emphasizing sample size rather than design structure the tradi-
tional approach permits sample size to be whittled down cell-by-cell, and it
fails to give systematic statistical guidance for detailed test conduct
which might preclude day-to-day test scheduling from totally dominatin
randomization and which could provide a solid base for accurate statistical
inference.

III. REQUIREMENTS FOR AN ALTERNATIVE DESIGN APPROACH. To be marketable
to the testing community (and executable in the field) any alternative to
the traditional design approach

• must be intuitively (if not analytically) simple

* must conscientiously consider problems of test scheduling and
control

0 must permit insertion of meaningful sensitivity tests

# must degrade gracefully in the face of resource reductions or
substantial data loss

In actuality, the traditional design approach meets only the first of
these requirements well. The complete randomization prescribed by the
traditional approach does not consider problems of test scheduling and
control, and it is seldom well-followed during test execution. Sensitivity
tests frequently involve too few trials for conclusive results, and many of
those trials are not usable for any other purpose. Furthermore, reductions
in sample size, through either resource reductions or data loss, are accom-
modated easily only because traditional designs lack detailed structure

* which could illuminate the consequences of sample size reductions in terms
other than square root of sample size ratio.

The example given now shows that a design generated by the basic matrix
approach can meet these requirements.

VI. AN EXAMPLE BASED ON CROSSING A FRACTIONAL FACTORIAL WITH A FULL
fAC(ORIAL. The basic matrix approach was implemented, as summarized in
Figure 1, in a design proposed for a test with the goal of comparing 5
levels of a primary factor under a variety of operational conditions, some
of which Lould be specified as combinations of secondary factor levels.
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The resource structure for the test was as follows. There were three
six-week test periods, between which substantial variations in equipment,
persunneI, and SOP's were expected. Each test period consisted of three
two-week test se ments, between which personnel were expected to change but
equipment andSOP's were not. It was suspected that crew learning might be
substantial within test segment, and it was anticipated that trials could be
conducted at the rate of 4 trials per day for 10 days per test segment,
yielding 40 trials Per test segment. Since there were 5 levels of the

-primary factor and 40 trials per test segment appeared to be feasible, it
was natural to define a basic matrix calling for all five levels of the
primary factor to be tested under 8 combinations of secondary factor levels
during each test segment. Since 8 : = 2 x 24, either 3 or possibly 4
secondary factors, each at 2 levels, could be accommodated in the basic
matrix. Conveniently, there are half replicates of the 24 design which are
of resolution IV (that is, all four main effects are estimable free from
2-factor interactions provided 3-factor and higher-order interactions are
suppressed) furthermore, these half-replicates are fold-over designs (they
can be run in blocks of size 2 without losing the resolution IV property).
One of those half replicates was therefore chosen to define the 8 combi-
nations of secondary factor levels for the basic test matrix which appears
as Table 2.

TABLE 2. The Basic Test Matrix

Secondary Primary
Factors Factor(G)

A B C 0 g1  g2  g3  g4  g5

a, b, c1  d, a a a a U

C2  d2  f
b2  c1  d2 Y Y Y Y Y

C2  d, 6 6 6 6 6

a 2  b, c1  d2 6 6 A 6 6

C2  d3 y Y Y y y

b2  c1  d,

C2  d2 a a a Y

The basic matrix is to be run in four blocks (a, •, y. 6)
of ten trials each. The order in which the four blocks are
run should be chosen at random each time the matrix is run,
and the order in which trials are conducted within blocks
should be randomized as much as possible within test con-
straints.
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The blocking scheme in Table 2, together with its associated randomi-
zation scheme, was chosen to exploit the fold-over property of the frac-
tional factorlal while providing an executable design and a randomized block
structure on the primary factor. Within the basic matrix, main effects of
both primary and secondary factors, as well as primary-secondary 2-factor
interactions, are estimable free from blocks and secondary-secondary 2-
factor interactions. Secondary-secondary two factor interactions are con-
-founded with each other in pairs and also confounded with blocks. The
randomization scheme does not severely constrain the test operator; instead
the randomization scheme together with the blocking scheme provide the test
operator with the sort of systematic statistical guidance he should have to
obtain a statistically defensible data set. Because block order is ran-
domized (this should be entirely executable because of similar structure
within dlifferent blocks), some inference regarding order effects (possible
"crew ledwining") might be possible even though such order effects would be
confounded in a complicated random way with suppressed 2-factor interactions
between secondary factors. The requested randomization of trials within
blocks could probably not be complete because it in unlikely that all of the

, changes in factor levels between an arbitrary pair of trials would be prac-
tical. All trials within a block, however, could reasonably be conducted
within a few days--which would give each block reasonable analytic inter-
pr"!LaLiun--and even partial randomization should preclude systematic within
block bias. Moreover, each original block could be regarded as two blocks
in the levels of the primary factor, each defined by one combination of
secondary factor levels. Thus the blocking and randomization schemes make
the core of the design a very simple randomized complete blocks design in
the levels of the factor of primary interest.

Several assumptions are made in what follows. First, it will be
dssumed that 3-factor and higher-order interactions among primary and
secondary factors are zero. For convenience, possible 2-factor secondary-
secondary interactions will also be suppressed (which ignores a possible
5(J0'rCe (if bias in the block, effects discussed). It will also be assumed
that the error terms, c, are uncorrelated random variables with mean zero
and the same variance. Although least squares estimation is implicit in the
discussion, linear models are discussed more to illuminate the potential
stucture of data sets produced by basic matrix designs than to provide
'.pecific analytic methods.

A. The Initial Model. Provided the basic matrix were re-run nine
time'ý (once for each test segment in each test period) and there were no
int.,radctiuns of primary or secondary factors with blocks, the following
I inar model would be appropriate (where 15 is the (probably random]

th th bq thef'ct. 0t the q block in the s test segment of the p test. period).
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Model 1:

Yijkmnpqs 1 gi + a. + (ga)ij + bk + (gb) A + cm + (gc)im + dn

+ (gd) in Opqs + tijkmnpqs (1)

Side Conditions

(0 z g.. a. b. * c.= d. - (ga) = (ga). = (gb)i. = (gb).k

(00i =(gc) (gd)i = (gd) n 0 (2)

B. Modifications and Extensions of the Initial Model. Although Model
has 60 independent parameters, illustrating the rich--analytic structure

potentially available in a data set generated from the basic matrix ap-
proach, this model can be modified by reinterpreting existing parameters and
can be extended by adding new parameters.

1he most obvious modification of the initial model is a reinterpre-
th ththtation of the block effects. The qth block in the sth segment of the p

test period contains interblock information on potential effects of period,

h . s;.gment. within periud, q'ps, and order or "crew learning," q + (nA)
p s'q pq
0(,1)s that is, the 35 independent block effects, 3p, can be reinter-

4ps pqsl
preted as

=pq +p q + Aq + ONL)p + (KOOqps)

pqs p ps q pq qps'(3)

Y (n)p. (nx) = (04)qp.

(0. (4)•ps -

In addition, the whole basic matrix is crossed with test segments and
test periods, so all interactions of test segment and test period with
primary and secondary factors are estimable and can be incorporated into the
model as desired. In particular, the fact that rather large changes in test
conditions were expected from test period to test period suggests that
possible interactions of test period with primary and secondary factors be
incorporated into the model. This is done in Model II, which also allows.
as an example, possible interactions of test segment with factors G and A.
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Yijkmnpqs p n 4ps gi (gn).ip (g4)ips aj + (an)p

(a,)jps 4 (ga).ij + (gan) ijp (ga.)ijps + bk + (bn)kp

(qb)i + (gbn) * C * (cn) + (gc)im + (gcn)imp
ikikp mmp ~ m

d n (drt) * (gd). i (gdn) -+ Xq + (nh)pq + (A0n p n1lp (Q qps.

+ ti jkmnpqs (5)

Side Cornditions in Addition to (2).and.(4)

= (gq,)a P = (an)j (an).p= (a)p.
= (aq,) .ps = (gan)ij" (gan)i.p =(gan).jp = (gaq,)ijp. =(Igat~ i.ps

(gay). jps- (bn)k. (tin).p (gbn) ik. (=bn)i (gbn-.kp

- (cn) . - (cn).p (gcu).im = (gcn)i.p (gcn).mp (dt)n.

- (di) (gdn)" = (gdn)i.p (gdn).np 0 (6)

C. Inserting Sensitivitv Tests. The 102 independent parameters added
in passing from Model I to Model 1I potentially enable stronger inferences
by explicitly accounting for interaction effects of nuisance parameters.
1hey also enable the insertion of sensitivity tests by allowing certain
factors to change from period-to-period or segment-to-segment.

lhe simplest way to introduce a sensitivity test is to replace one of
the secondary factors in the basic matrix by other factors for one or more
test periods. For instance, factor B could be replaced by three factors B),
B,., and B:,, each at 2 levels and each varied during one test period (and
fiyid during the other two periods). Then B would be nested in test period

p, and its main effect, (b ) as well as its interactions with the primary
actor, ( , would have meaning only within period p. The 15 indepen-

dent Model 11 parameters involving factor B would be replaced by the 15
independent parameters (bp)k and (gbp)ik with bp. = (gbp).k = 0. Adding a

sensitivity test in this manner does not impact the precision or bias of the
estimators of any primary or secondary effects except those of B. However,
the estimator of each estimable effect involving B is based on only one
third the observations for corresponding estimators Pinvolving other secon-
dary factors, and each is biased by possible 2-factor interactions with test
period (which are nonestimable).

Alternatively, a factor could be replaced for one or more test segments
in each test period, but such a situation will not be discussed here.
Instead, a different method for adding a sensitivity test is considered.
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Suppose, for example, that factor A represented two types of jamming and a
sensitivity test were desired to investigate whether different methods of
employment of each type jamming had any substantial effects. By selecting
three different methods of employment and applying each during one randomly
s~lected test segment of each test period, the desired sensitivity test
could be accommodated in the design and in the model. This essentially
confounds a new factor, E, with test segment. The six independent para-
meters 4ps, each reinterperted as being the effect of the segment of period
" p for which factor E is at levels, lead to six independent parameters

-e= $.s and (ne)ps~ = p es with e. = (he) . In addition, the -54

independent interaction parameters (gip) (at) and (ga*)ijps lead to
ips' (a*) ijps

54 independent parameters (not all of which are necessarily worth enter-
taining in a model) describing possible differing effects of jamming method
between jamming types and between levels of the primary factor:

is (g) (gne)i , (g$ips - (ge)is5

(ae). = (ap). (aite). (atjs). (ae).is js' jps ips is'

(gae)ijs ` (ga#ý)ijs1 , (gane)ijps = (ga)ijps - (gae)ijs. (6)

When a sensitivity test is inserted in this manner, none of the estima-
tors of the original primary or secondary factor effects are directly im-
pacted. As when changing a factor from period-to-period, however, estima-
torb of effectt. involving the sensitivity factor require more judgemental
interpretation than those involving the primary and secondary factors be-
cause of confou-iding.

Clearly, several sensitivity tests could be inserted into the same
design by proceeding along the lines suggested above. Although results of
such sensitivity tests cannot be expected to be as clear as results in-
volving factors examined in each basic matrix, they can involve sufficient
numbers of well organized trials to justify their conduct. Moreover, these
sensitivity tests follow the spirit of efficient statistical design, inter-
.•aving new fartors by confounding them with interactions of old factors and
reparameterizing Yather than stealing a few observations from the existing
design and conducting a tiny excursion.

D. Graceful Degradation. Reduction of the number of trials, either
before or during testing, could be accommodated by the design in simple ways
having clear consequences.

One easy way to accommodate pre-test resource reductions would be to
eliminate test periods or test segments. Termitation of the test after two
test periods, instead of three, would have only a slight impact, primarily
that of sample size reduction. Differences between the two test periods
could still be estimated, and any period-to-period sensitivity test could
still be implemented on a reduced basis. Termination of the test after one
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test period, however, would preclude period-to-period sensitivity testing
and force the assumption that differences between periods would not have
been substantial. Since it was anticipated that differences between periods
would be more pronounced than differences between segments, the statistician
could state that a test having three test periods of one segment each would
be more likely to yield general results than a test having one test period
of three test segments. Of course, reducing either the number of test
periods or the number of test segments to one limits both the number and the
value of sensitivity tests which could be accommodated. -

Another way to accommodate resource reductions would be to reduce the
number of levels considered for the primary factor. This could be done
prior to test or it might be necessary during test execution if (as fre-
quently occurs) trials could not be conducted as quickly as originally
anticipated or if a large number of trials resulted in unusable data. Since
the levels of a primary factor often represent incremental additons to some
baseline conditions, they could often be prioritized for deletion, and the
loss of one or two levels might only reduce the scope of potential results.

Unplanned data loss on a large scale (as much as 1/3 to 2/3 loss) is
unfortunately not uncommon during a field test. Designs generated by the
basic matrix approach degrade gracefully in the presence of such data loss
because the same block structure which permits refined data analysis with
nearly complete data sets also gives a solid framework for salvaging results
from a degraded data set. In particular, the fact that the core of the
present design is a randomized complete blocks design in the levels of the
primary factor assures that, even with substantial data loss, comparisons
between levels of the primary factor can be made in such a way that they are
at least free from main effects of test period and test segment. At worst,
differences between two primary factor levels could be examined (using
either parametric or nonparametric techniques) in all blocks (modified by
restriction to one combination of secondary factor levels) having usable
trials for each of the two primary factor levels. To a lesser extent,
secondary factors could be examined within the remaiiiing block structure
too. Each block in the original design could be regarded as up to five
blocks, one defined by each level of the primary factor having an ooser-
vation at both combinations of secondary factor levels. A crude analysis
could then be performed using all (modified) blocks by examining differences
between levels for each secondary factor separately (ignoring hopefully weak
confounding of secondary factors); the apparent effects obtained would at
least be free from main effects of the primary factor as well as those of
Lest period and test segment. Data quality, computer facilities, and time
permitting, the blocking structure could probably be exp'oited in more
elaborate ways to sort out main effects of secondary factors or even inter-
dctions between primary and secondary factors.

In no case does an underlying design structure which permits consider-
ation of models like Model I and Model II preclude accommodation of resource
reductions or hinder data analysis in degraded modes. Provided the design
structure is based on the resource structure, it can accommodate resource
reductions gracefully, if not without consequences, and refined structural
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models can serve as guides to the data even when they can no longer be fully

exploited. -0

V. SUI4ARY AND CONCLUSION. The design example illustrates the flex-

ibility and analytical r-fchness which can be obtained by applying an intu-

itively simple structural approach to the design of a field test. Such

designs enable formal consideration of a large number of frequently ignored

test factors, provide systematic statistical guidance for detailed test

conduct, and emphasize test structure rather than sample size.

Although such desigqs seem to have no statistical disadvantages com-

pared to more traditional designs, they have the pragmatic disadvantages

characteristic of all detailed plans and all deviations from traditional

methods. Detailed statistical test planning is hard work, forces test

conduct issues traditionally decided by convenience during test execution to

be deliberately resolved prior to test, and provides guidance to the test

operator which not only imposes constraints on his conduct of the test but

also makes the inevitable shortcomings in test conduct more obvious. Be-

cause the traditional approach is accepted and does not force detailed

statistical planning upon the testing community, any highly structured

design proposed for a field test is likely to meet stiff resistance, and

proposers of such designs must be prepared for extended argument and fre-

quent disappointment.

3is
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SOME REMARKS ON CROSSOVER EXPERIMENTS

J. ROBERT BURGE
WALTER REED ARMY INSTITUTE OF RESEARCH

-- I-

Introduction.

Frequently experimental observations are collected at different times

on the same sampling unit. The simplest example of such a repeated-measure-

ments design consists of the administration of a control treatment (a placebo

or standard) on. one occasion and the treatment of interest on another. The

paired observation case, when extended, generates tbe general setup of k

responses collected on the same experimental unit at successive times. Designs

in which several treatments.are applied in successive periods to each unit in

a cyclic sequence are known as change-over designs. These designs are often

exercised when units are highly variable, or are expensive or scarce.

Change-over designs are capable of providing treatment comparisons of

high precision, because differences between units can be disjoined from exper-

imental error. This advantage 'a obtained at the risk of possible complications,

for performance in a given period might reflect more than the direct Pffect of

the current treatment. These additional effects, known as residual effects,

exist if preceding treatment effects crossover to influence responses measured

in succeeding periods.

Cux (1953) advises that the crossover design be used only when it can

be assumed that residual effects are negligible. fHowever, when the residual

effects do not persist for more than one period after application, some provi-

sion for the separation of direct and residual effects can easily be made.

Still, it is most useful when the residual effects are relatively small.
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Case I: Three Factor Repeated Measurements Experiment

Before discussing the details of a crossover analysis, a repeated

measures example is considered. The summary of results presented here

resembles the pattern adopted for split-plot procedures. While an

experimental unit (whole plot), in a split plot design, is subdivided

physically, an experimental unit is split in time in a repeated measures

design. That is, each unit receives several treatments in successive

time periods. It is assumed in this first example that performance in

a given period reflects only the direct effect of the current treatment.

a) Numerical Example.

This repeated measures analysis will be demonstrated using artificial

data based on a study now being planned at Walter Reed. The study will

be used to compare two positioning techniques in reducing the discomfort

from intramuscular injection in the dorsogluteal site. The techniques

involve placing patients in the prone position with either hips inter-

nally rotated (method A) or with hips externally rotated (method B).

To illustrate the meaning of the data set out in Table 1, ten post-

operative patients were randomly assigned to one of two groups. The

five patients allocated to group one received their first period injection

(a.m.) while placed in position A. In period two (p.m.) they were placed

in position B and the second medication was injected into the opposite

dorsogluteal site. For the next two days medication was supplied by the

oral route. On the final day the period one and two injections were

administered in the reverse order (viz., B then A).

3
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TABLE I

I) I :r( jl.,•f• SCORES FROM INT' ,MIIC1r!,AJr INJECHIONS

Period 1 Per 2 Terod1 erlod 2
(a...) (p~m. J (...) .3.

Patient Trt. A Trt., B Trt. B Trt. A

] 1.0 2.8 1.9 3.0

2 1.0 1.. ".2

*C(r.!4p One 3 2.0 4.0 ).9 3.6

4 1.5 3.0 1.5 2.0

5 2.5 3.0 L.3.0-_ 3.0

Patient Trt. B Trt. A Trt. A 'rrt. B

6 3.3 2.0 2.5 1.2

7 2.1 1.7 1.5 1 0

Gr... 8 4.5 3.4 4.0 3.8

9 Is.5 1.5 2.0 4.5

* 10 3.5 1.0 1.5 4.0
I -- - * -- * - - •~-- * .- - -.
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In contrast, the five patients assigned to the second group received-.. .

the sequence I then A on the first day. On the final day their sequence

was A then B. The patients used the discomfort rating scale given in

figure I to assign scores.

1 2 3 4 5
SI I . I I I.

no moderately extremel)
discomfort uncomfortable uncoafortat

FIGURE 1
DISCOMFORT RATING SCALE

b) Model.

It will be assumed tlat the linear model upon which the analysis

would be based Is a function bf the main effects of groups (yi),

periods (p treatments or methods (T1)-and their interactions.

11

Specifically,

PTJl. + YPxij1

The notation I1 indicates the effect of patient k nested underk (.)

group I. The "patient" factor is crossed with periods and treatment,

but is nested under groups.
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c) Analysis of Variance.

Assuming that all Interactions with the "patient" factor are zero,

the analysis of variance suamary is shown In Table 2. The mean square

for patients nested in groups is used to test the group effect. The

period and treatment effects are within patient affects.

: d) Unbalanced Data.

i Suppose the patients were only administered'each treatuený one time.

iMembers of the first group receiving only the sequence A-B; the second

group being handled in the reverse order B-A. Then only four of the

eight subclasses In Table 1 would contain data (viz., the non-bracketed

data cells). Nevertheless, a feature of the design for the remaining

data set, is that it still yields an analysis of variance that is ePasy

to calculate and interpret. Table 3 allows one to examine and compare

the analysis of variance processore for the full (N-40) data set with

the reduced set 0(-20). The economy of effort is desirable when the

interactions are zero. If not, the adequacy of the reduced design is

questionable-estimates of the main effects will be confounded by

interaction terms.

3

4
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TABLE 2

CASE 2
SU*aRY OF AOV THREE-FACTOR EXPERIMENT

Source of
Variation df mS F

Between Patients 9

Groups (G) 1 2.704 1.1704
Error (a) 8 2.3102
(Patients w. groups)

Within Patients 30
Periods (P) I 0.841
GP 1 3.844

Methods (M) 1 7.056 16.2549
Gm 1 2.401

PM 1 <.001
GPH 1 0.025

Error (b) 24 0.43408
( P x Patients w. groups

Pmx " "

TOTAL 39
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Table 3 AOV Scheme for Balanced Case (N-40) vs Hissing Cells ((N-20). -- ,=-

Source of Variation df df Source of Variation Alias

B- Between Patients 9 9[ .. Groups I- I Groups PM
"•Error (a.) 8 .8 Error (a)

[Patients W. Groups] 8r

Within Patients .30 10
Periods 1 1 Periods Gm
GP I -

Methods I I Methods GP
G• 1 -

PM 1 -
GPM 1 -

Error (b) 24 8 Error (b)
"x Patients w. Groups

"H x Patients w. Groups
PM x Patients w. Group AP I

TOTAL :9 19 TOTAL

.1

.I

11
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Case 2: The S mlpc Two-Treattment Crobsover Experiment

In the exAmple we consider next, each experimental unit (patient)

bag two periods of treatment supplied. The treatments, say A, B, to

be compared are randomly assigned to the two periods. Usually, equal

numbers of units are allocated to two groups. Members of the first

group receive the treatment sequence AB; the second group is treated

in the reverse order BA.

FIGURE 2
NOTATION AND LAYOUT

FOR THE SIMPLE CROSSOVER EXPERIMENT

Randomize *1

a) Numerical Example.

The reduced data set (N-20) of the previous example fits this

layout of a change-over experiment. It will be used to demonstrate

an analysis that follows the summuarization adopted by Lucas and Patterson

(1962).
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b) -H-.1

The model fot the observation 18 y4'k V + +÷ + + + tjk

vhere

L aI -overall m um ... 
•

- effect of the kth period

- effect of the uth treatment (method) m " A, 3

. effect of the rth tregtment in the lot period oi the

resposCe in the 2nd period

WILJ- the effect of the jth subject in the ith group

: " 1, 2 j - 1, 2, ...- 9 ij

Cijk " Vithin subject deviation for the kth period
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.c) Model Eguatlons. -Consider the fol0o wini: -.... .. :

P "11 '12 '" '23 "24 0 * • 8

1.0 1 1 0 0 0 1 1 0 1

2.8 10 0 0 -1-1 11

1.0 1 0 1 0 0 1 1 0 1

1.5 1 0 1 0 0 -1 -1 1 1

2.0 1 0 0 0 0 1 1 0 1

4.0 1 0 0 0 0 -1 -1 1 1

1.5 1 0 0 0 0 1 1 0 1

3.0 1 0 0 0 0 -1 -1 11

2.5 1I -1 -1 0 0 1 1 0 1

3.0 1-1 -1 0 0 -1 -1 1 1

Ym M 
z

20 x 13

3.3 1 0 0 0 0 1 -1 0 -1

2.0 1 0 0 0 0 -1 1 -1 -1

Z.1 1 0 0 0 0 1 -1 0 -1

1.7 1 0 0 0 0 -1 1 -1 -1

4.5 10 0 1 0 1 -3 0 -1

3.4 1 0 0 1 0 -1 1 -1 -1

4.5 1 0 0 0 1 1 -1 0 -1

1.5 1 0 0 0 1 -1 1 -1 -1

3.5 1 0 0 -1 -3 1 -1 0 -1

1.0 1 0 0 -1 -1 -1 1 -1 -1

V"1 " Ou,' w11' I12' 13, T14' " 2 1 , T22' T2 3 7124. Pt 0 x)

V2 (j, O, *, 5) where 6 represents the period by treatment interaction.
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The components of the vectors i and bV2 form subsets of the

set of Greek letters used to label the columns of the 20 x 13 matTix Z.

This association is used to determine the corresponding coluns one

selects from Z to build the equations Y - X1 ] and

used to perform the analysis presented in Tables 4 and 5.

d) Analysis of Variance.

The regression approach to AOV offers a computationally convenient

algorithm for generating, from lic Y- X - b equations, the various

entries in the AOV table. The RO-notation, employed in the tables,

serves to clearly describe the way sums of squares were computed.

A complete summary of RO-notation is given in Searle (1971).

35
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TABLE 4
AOV FOR CASE 2

(simple two-treatment change-over design)

Source of
Variation df Ss j RO-Notation F p

le6tweenUlnits 9. W1041
Groups 1 1.352 R (61iP,$) 1,224 .3
Units v. Groups 8 8.836'' (-f)

Within Units 10
Periods 1 0.200 R (P)
Methods 1 10.658 R ($) -RI (¢ji,r,p) 25.9

Error (b) 8 3.292 Y'Y - R (iip,*,X)

Total 19 24.338 Y'Y - R (pi)

Since direct and residual treatment effects are not orthogonal,

t•v partitions of the total sum of squares for treatmens are given in

Table 5. Only the first of these is required if residual effects are of

no interest apart from their use in adjusting direct effects. Both will

be required when residual effects are tested. F-tests for direct and

residual effects can be carried out by dividing s 2 d and S2 r, respectively,

by S2 . A summary of.the experiment is presented in Table 6. The first

part of this table gives the summary required when residual effects are

present. The second part presents the simmary required when the analysis

shows residual e.f:eezs aru negligible (i.e., estimates of direct effects

unadjusted for :esidual effects, but adjusted for differences between

units, are give-)
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I7

STABLE
PARTITION OF TREATMENT SUN OF SQUARES

Source of

Variation df SS RO-Notation

Betveen Units

"Units W. Groups 8 8.836 R(T)

Within Units

Periods 1 0.200 R(p)
Treatments 2 12.010 R(*, Ajp , o)

Error 8 3.292 ¥'Y-R(u, w, 0, o, -X)2 .4115

Total 19 24.338 Y'Y-R(u)

Direct Effects 1 9.801' R(OIti, V, . X) S2
(eliminating residual) d

Residual Effects 1 2.209 R(XIu, Tr, P)
(ignoring direct)

Treatments 2 12.010

(direct and residual)

Direct Effects 1 10.658 R(*Ju, ', O)
(ignoring residual)

S~2
eosidual Effects 1.352 R(A]j, r, P, *) S

(elimdnating direct)
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TABLE 6
SUMMARY OF RESULTS CASE 2 DATA SET

Residual Effects Present:

( + p1 + *)(P +~-

Group 1 Period 1 Group 1 Period 2
Trt. A Trt. BA

means- 2e8
:tn-5I nw5

SSe 1 5 - .287 .497 - Se

SI 3.58 means

n-5 n-5

Group 2 Period 1 Group 2 Period 2
Trt. B Trt. A.

A A A
(11 + - I

Residual Effects Negligible

Trt. A Trt. B,
l, )

1.7- means [IiL1-
n- 10 n-1 0

Se 4J1/ln

w .203
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Case 3: Alternative Analysis for the Simple Two-Treateent Crossover
Experiment

S -i The two perLod crossover design for. clinical trIals was compared .

I v with other simple designs in terms of statistical precision and cost

- by Brown (Biouetrics, March 1980).. In Brown's article an alternative

analysis of a simple crossover study was illustrated. The data from

this example are presented in Table 7. The response of interest is

an oral hygiene index used to compare a test compound with a placebo

with regard to effect on dental hygiene. Summary statistics and

tests of significance for the data are given in Table 8. Results of

* eatimatigg the treatment effect on the basis of first-period data

alone are reproduced in Table 9. For comparative purposes, the sunmary

results from the hygiene data are presented using the "Lucas Format" in

* Table 10.

3
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Table 7
Improvement In hygiene index for a crossover study

Group I Group I1
Subject Period 1 Period 2 Period 1 Period 2

Placebo Test Test Placebo

1 0.83 1.83 1.67 0.33
2 1.00 2.17 2.50 0.50
3 0.67 1.67 1.00 0.17
4 0.50 1.50 1.67 0.50
5 0.50 2.33 1.83 0.50
6 0.83 1.83 0.50 0.33
7 1.00 0.50 1.33 0.67
8 0.67 0.33 1.33 0.00
9 0.67 0.50 0.50 0.17

10 0.33 0.67 2.17 0.83
11 0.00 0.83 1.67 0.33
12 1.17 1.33 i.50 0.00
13 0.00 0.67 1.33 0.50
14 0.50 1.83 1.50 0.50
15 0.33 1.50 1.33 0.00
16 0.33 1.50 .0.67 0.17
17 0.50 1.17 1.67 0.50
18 1.00 1.67 2.50 0.67
19 0.00 1.33 1.83 0.00
20 0.50 1.50 0.83 0.67
21 0.50 2'83 2.33 0.17
22 0.17 2.33 1.17 0.50
23 1.00 1.33 1.33 0.00
24 1.00 1.67 1.33 0.83
25 1.33 0.67 0.33 1.33
26 0.33 0.83 2.17 1.17
27 2.00 1.00 1.00 0.33
28 4.00 0.17 0.33 1.00
29 0.83 1.67 1.17 0.17
30 0.50 1.33 0.50 0.50
31 0.50 1.50
32 0.50 1.67
33 2.17 1.33
34 0.67 1.17
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TABLE 8
SUWARY STATISTICS ANID TESTS OF SIGNIFICANCE

FOR THE HYGIENE DATA

nalysis of Differences

Group I Group II
ean O.T5985 -0.9440

"Variance 1.3268- 0.5173
Number 34 30

Pooled Var. 0.9482
Est. Trt. Effect 0.7712
St. Error 0.1220

t 6.32
df - 62

p <. 001

Analysis of Sums

Group I Group II
Mean 2.1176 1.7883
Variance 0.6059 0.5333
Number 34 30

Pooled Var. 0.5719
Est. residual effect -0.8294
St. Error .1894

t 1.73
df - 62

p 0.087
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. TABLE 9
Summary Statistics and Tests of Significance

of the First-Period Data from the Dental Rygiene Study

Group I Group II

Mean 0.7597 1.3663
Variance 0.6 0.3845

b34 30

Pooled Var 0.4992
Trt, Effect 0.6066
St. Error 0.1770

t 3.4271
df 62
p 0.001

Basically, Brown's article is critical of crossover studies.

The analysis of differences, he points out, relies on the assumption

that a therapy has a certain additive effect that does not depend

upon the time period the treatments were administered. That is,

response to a tr-•.tment should not be influenced by whether or not

the other treatment was just given. For the hygiene data, the

analysis of sums suggests the assumption is questionable; thus, the

possibility of a large direct treatment effect bias exists due to

residual effects. When the assumptions are contradicted, Brown

recommends one only utilize first period data. Although his data set

was large enough to evaluate treatment effects in this way, he reminds

us that this is the exception, not the rule, for change-over designs.
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TABLE 10
PARTITION OF TREATMENT SUM OF SQUARES: HYGIENE DATA SET

Source of
Variation df SS RO-Notation F t

iBetween Subjects 63 18.5993
Groups 1 0.86264 3.015 1.736
Subji w. Group8 62 17.7367

L) Within Subjects
Periods 1 0.5 R(p 1p)
Treatments 1 18.95456 R(TDj j, p) 39.963 6.32

Error (b) 62 29.40679

'
Total 127 67.46069 Y'Y - (

Direct Effects 1 5.86495 R(TD u, p, TR) 12.36 3.52
(eliminating residual)

Residual Effects 1 13.95225 R(TR1J, P)

(ignoring direct effects)

L

Treatments - TD and TR. 2 19.8172
(direct and residual)

or

Direct Effects 18.95456 R(TDfu, P)
(ignoring residual)

Residual Effects 1 0.86264 R(TRIIJ, P, TD)
(eliminating direct effects)

Treatments 19.8172
(direct and residual) 2
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Sumary -Brown vs. Lucas

Brown's format for crossover analysis was applied to the injection

data pnd the results are presented in Tables 11 and 12. Summary

results from the injection data tre presented using the Lucas format

ln-Table 13. Brown bases his test for a residual effect on the

"Analysis of sums". Lucas would carry out the F-test for residual

2 2
effects by comparing 2 r with s e• The tests differ. Brown chooses

betweam group variability for an error term, while Lucas chose

vithin-subject variability. Further differences, as well as

olud1arities, between the other tests of significance utilized by

these two approaches are set out in Table 14.
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TABLE 11
SUMMARY STATISTICS AND TEST OF SIGNIFICANCE

Analysis of Differences

Group I Group II

Mean -1.26 1.66
Variance 0.513 1.133
Number 5 5

Pooled Variance 0.823
Est. Trt. Effect -2.92
St. error 0.5737

t -5.089
df 8

p 0.00094

Analysis of Sums

Group I Group II

Mean 4.46 5.50
Variance 1.933 2.485
Number 5 5

Pooled Variance 2.209
Est. trt. effect -1.04
St. error 0.94

t -1. 1064
df 8

p .30
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TABLE 12

SUMKARY STATISTICS AND TESTS OF SIGNIFICANCE

Analysis of Period One Scores

Group I Group. II

Mean 1.6 3.58
Var .425 .992
n 5 5

Pooled Var .7085
Est. trt. effect -1.98
St. error 0.5323533

t -3.719
df 8

p .006
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li7f
TABLE 13

PARTITION OF TREATMENT
SUM OF SQUARES

-source of
7Variation df SS MS

Between Units 9 10.188

Groups 1 1.352
Units w. Groups a 8.836

AWithin Units 10
P 1 0.20
Treatments 1 10.658 10.6582

LError a 3.292 0.4115 S 2e

Total 1

df SS RO-Notation

Direct Effects 1 9.801 R(f Iu, ,p, S2 d
(eliminating residual)

Residual Effects 1 2.209 RX IU if, P)
(ignoring direct effects)

Treatments 2 12.01 R (4, X.ii,~
(direct and residual)

OR

Direct Effects 1 10.658 R w1 , p) S

(ignoring residuals) d

Residual Effects 1 1.352 R( IJt po *t) S 2r
(eliminating direct)r

2 12.01
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TABLE 14'
A SMWUI.RY RELATING TESTS OF

SIGNIFICANCE FOR TWO APPROACHES TO
CROSSOVER ANALYSIS

1. Analysis of Differences

(Brown) (Lucas)

2 (=2i9 2 - 2 25.9 - 10.658 * S' 2 d-um:2;- ('5.089_)2 ___

5 •737) 2.4115 S2
e

"2. Analysis of Sums

2 - _1.04.2- (_1.1064)2 - 1.224 1.352 S2r
V"94 (8.836/8) MS-uniLts w. groups

NOTE: 3.286 - 1.352 - S2r

.4115 $ 2

e

3. Analysis of First Period Scores
(residual effects present)

2 (_ -1.98 2) - (-3.719)2 - 13.83 - 9.801 - S2 d
F(.7O85)(4I1O) / 3.7085 S12

e

- /C -1.98 (-24. (88)2 -23.82 *9.801 - 2d
(. 4115) (4/10)1ý½ .4115 S"•
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A TIME SERIES ANALYSIS AND MODELING APPROACH OF
SENSE AND DESTROY ARMOR (SADARM) RADIOMETRIC

(ELE'CTROMAGNETIC RADIATION) NOISE DATA

Richard T. Maruyama
Probability and Statistics Branch

Ballistic Modeling Division
U.S. Army Ballistic Research Laboratory

Aberdeen Proving Ground, Maryland

ABSTRACT. A series of tests were conducted in August 1978 to collect

radiometric (electromagnetic radiation) data at the North East Test Site of

the Rome Air Development Center in Rome, N.Y. This radiometric data was

collected using the Sense and Destroy Armor (SADARM) target sensoring

system. Both background (grounT noise) and target (tanks) data were

collected to investigate the signal characteristics of the SADARN weapon

system. The data was recorded at equally spaced time intervals over
five ranges. The objectives of the SADARM sensor are to detect and then

aim the antiarmor munition at the target.

This paper presents the Box and Jenkins time series modeling effort on

the background radiometric data. This effort resulted in an Autoregressive-
Moving Average (ARMA) model of order pal and q-l, where the autoregressive
parameter ranged from 0.73 to 0.88 and the moving average parameter
ranged from -0.59 to -0.64. This ARMA(l,l) model seems adequate for
characterizing the background noise of the SADARM weapon system.

1. INTRODUCTION. The Sense and Destroy Armor (SADARI) is a "Fire

and Forget" antiarmor munition being developed aNd tested by the US Army

Armament Research and Development Command (ARRADCOM). The lead laboratory
for the program is ARRADCOM's Large Caliber Weapon System Laboratory
(LCWSL). The systems analysis and sensor technology research is ongoing
at the Ballistic Research Laboratory (BRL), Aberdeen Proving Ground, MD.

As part of this BRL effort the SADARM sensor was tested in August 1975
at the North East Test Site of the Rome Air Development Center in Rome,
NY. This electromagnetic radiation data collected in Rome, NY, is
essentially the absolute temperature of the ground surface at the sensor's
focus point,'and is referred to as radiometric readings. The functional
relationship between absolute temperature and the radiometric reading is
given in equation (1):

n - 2kT/X 2  (1)

where k is Boltzmann's constant

T is the absolute temperature

and A is the wavelength.
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The radiometric data was collected over field and tree terrains, at
five different distances that ranged from 30 to 150 meters (see Figure 1).
The SADARM sensor was mounted on a helicopter at a slant angle of 30'
measured from perpendicular to the ground. The helicopter was then
flown at a ground speed of 60 knots. The SADARM sensor recorded approxi-
mately two thousand equally spaced observations (data) per second and
was instrumented to make four (4) revolutions per second (RPS).

The object of the sensor is to detect the target and then aim the
weapon system under battlefield conditions. Hence, the response of the
SADAIRM sensor to varying background conditions will effect the weapon
system's ability to detect targets.

Presented in this report is the Box and Jenkins modeling approach
for the radiometric non-target observations. The analysis demonstrates the
ability of the ARIMA model to characterize the SADARM data.

2. THE BOX AND JENKINS TIME SERIES APPROACH. The Box and Jenkins1

Autoregressive Integrated Moving Average (ARIMA Cp,d,q)) model is used to
characterize many types of-business, economics and engineering observations.
The need to develop a model of the SADARM sensors' responses to backgrounds
(terrain) has been ongoing at BRL. In order to satisfy this requirement
the Box and Jenkins approach was initiated.

A representative plot of the August 1978 SADARM data is presented in
Figure 2.

The ARIMA (p,d,q) model is presented below:

O (B)(1-B)d - bq* )at (2)

where B is the backshift operator such that BZt * t.1,

p (B) is a polynomial in B of order p and are autoregressive parameters,

e (B) is a polynomial in B of order q and e are moving average parameters,
q

p,d,q are non-negative integers, and

at are random shocks (white noise) assumed to be independently
2distributed normal variates, N(O;a).

A series of five hundred observations were analyzed and used to
estimate the Autocorrelation Function (ACF) and Partial Autocorrelation
Function (PACF) out to 40 lags (see Figure 3 and Table 1).
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t ti I STIKAILO SAi70OMMA3LION MAND PARTIAL U1T0IURLUTIOlN PFjIC?30

&ADAMOB AIOCNh3C *LAOING. 3000 observallefls per aecendl

$00 ObservatimsAteoalela
I 2 S 4 5 6 7 1 9 10

I last 1.10 .60 .63 .46 .56 .27 .21 .17 .15 .15 .15
11.20 .17 .22 .J7 .33 .57 .40 .39 .10 .32 n2

21-36 .23 .37 .11 .07 .04 .04 .40 .12 .16 .23

51-40 .34 .31 .5 *36 .3 1 .23A .16 .10 .00 -. 03

51 US* 1-10 J4 -. 21 -. 22 -. 11 -. 08 -. 07 -. 08 -. 00 -. 02 .. 06

11.20 -. 00 -. 06 .02 .01 .00 .11 .00 .01 .04 .03

213.0 .02 .01 -. 01 -. 10 -. 06 -. 11 -. 11 -.02 .06 .04

53.40 -.0$ .01 .16 .22 .12 -. 07 -.GS .04 -. 00 -. 12

Pail1. Autaeortellimes

too aseVvat is"e
1 2 5 4 9 1 0 0 10

a Laegal-SO ."6 -. 43 .25 ..0f .05 .03 .02 Ad4 .0) .02

11-20 .12 .00 .00 .00 .13 -. 02 O03 .03 -. 01 -. 02

23.1-80-. -. 06 -. 03 -.08 .03 -a0 .11 .04 .03 .01

81-40 .00 .14 .01 -. 00-.09 -. 04 .00 -. 10 -.06 -.04

1: Le1-IS .54 -. S? .01 -. 12 -. 06 -. "0 -. 11 -. 00 -. 07 -. 15

21-20 -. 12 -. 10 -. 11 -. 12 .02 -. 06 -. 84 -. 00 .01 -. 01

213.0 .0s .01 .02 -.011 .04 -. 14 -. 06 -Am4 -.01 -. 115

31-40 -. 14 -. 01 .05 .00 .04 -.00 .10 .04 .03 .. 05

EST IMATED AfTWOC0ALATI"INd AN PARTIAL AUrCOPRZIATIO PWNCTIO

;a

a..ACPCZ t)

-e.9

8.0 4

PACt~

4.* t Il Iai A. I
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In building a dynamic time series model three steps are required;
(1) tentatively identify the model, (2) fit the data to the model, and
(3) perform a diagnostic check for lack of fit. The identification step
requires an overall view of the data structure. In this case a damping
sinusoidal structure for the ACF and two significant spikes at the first
and second PACF are displayed (see Figure 3). The estimated mean (U)
and standard deviation (a) of this time series are -1.603 and 3.712,
respectively.

This identification step implies that an autoregressive model of order
p.2 be tentatively entertained. Hence, the ARIdA (2,0,0) model was fitted.

ARIMA (2,0,0) Tentatively Entertained

(1 - 01B - 02B2)(t - W = at (3)

where the estimated parameters are p u -1.636

1 1.252

A

2 = -0.450

The autocorrelation function of the residual, at = Zt-Z, of the

ARIMA (2,0,0) model was then looked at for lack of fit. These residual
ACP are listed in Table II, where the estimated residual mean and standard

deviation are U = 0.00175 and aat = 1.681. The ACF of the residuals at
lags k=l and k=2 indicate some remaining residual structure. Also, the

cutoff of the residual ACF demonstrates a possible need for a moving
average term in the model.

Hence, the ARIMA (2,0,1) model was entertained to remove the spikes
in the residual ACF. The ARI4A (2,0,1) model is as follows:

ARIMA (2,0,1)

2
(0 - OH - 2B M)(Zt - V) = (G - eiS)at (4)

where the estimated parameters are p = -1.622

0.886

2= -0.138

01 = -0.506
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TAMA I I

1*flmavD ALROMMLATI0N AND PARTIAL AUftSOIIITIN FUNCTIONS OF USIOUALS
(SAlto" ,00)

Us 1ae-19 .11 -. 21 .01 as0 .0 .04 .01 .01 .18 .02
13-aS -. 0' .04 .09 .01 .11 .14 .05 .04 .06 .04
31-30 .66 .06 .04 -. 06 .06 -. 01 -. 06 .04 .19 .60

a3 a 4 so
ob lapst -a .aa -. 22 .07 .06 .41 .0' .0 .0 .07 -. of)

uS-2s -. 00 .e. .a -04g .14 .10 .06 .0' .01 .a2
21.10 .0' .01 .02 -. 09 .05 -.. " -. 04 .. as .06 .416

PLOT OF THR MINTIATED AC? AND PACP OF RESIDUALS (AR!NA (20.00))

AC?(a

-Ir.

m.D PACV(:
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I

The addition of the moving average term, 0 did remove the autocorrelation
spikes for lags k a 1 and k a 2 (see Table III). Inspection of the residuals

with mean v 0.0009 and standard deviation a 1.616 indicated a good fit
atat

(see Figure S). The 9ý% confidence interval for the second estimated auto-
regressive parameter, *2 -0.138, overlapped the zero point (-0.285, 0.0086).

This suggested the possible removal of this term from the model. Rased upon
this information and the principle of parsimony in the use of parameters,
the second autoregressive parameter was removed and the ARIMt (1.0,1) model
was considered.

The ARIMA (1,0,1) model is as follows:

ARIMA (1,0,1)

(1 - *lB)(zt - i) * (1 - e1B)at (5)

where the estimated parameters are P -1.618

= 0.7553

6 • -0.5960

Both the ACF and PACF of the ARIMA (1,0,1) residuals indicated a lack of
any remaining structure. Table IV and Figure 6 show that the residual
{at a zt - zt) no longer contains any structure. Further data analysis to

better characterize this time series was unsuccessful.

A sunumary of the models and their estimated parameters are presented
in Table V.
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56 IKA?!3 AL"COMLAION10 A1ND PARTI AL AVTCC0MZLA^TIO PUNICTIONS OF AISIUUAL

(AtlftIS (3..))

Residual M660a SAM000

Residual 3%uafad DO6S~1510 3.6163

AD,

1 3 3 4 5 6 9 g0

Up1-.30 .0 -. 112 .03 .0 .06 .01 .01 -. 01 .. W .06 -. 90

11-g3.) -. 03 -. 3 -.09 -. 00 .03 .01 -. 00 .01 6 -0

21.310 .0? .01 .60 -.09 .As -. 09 -. 60 -. 01 .06 .*T

FAC*

Lask .1 a.0 -. 2 -. 9 .06 t.03 .0 -. 0 .. 66 -0

1.3

-1.3

91012 S
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IMLI IV

"IkkIATI A1TO0AULAION AMS PAITIAI AtflMOALA1ION FLRCT30NS OF RPMWI.5I

Uslloomal Mis 0 0.08M5

a.ssdlika SIS.40I4 3.watt1l a 1.625

DC,

500 oseervatlearn

% * 2.10 .04 .06 -. 0 .03 -. 03 .00 -. 62 -. 02 .6 *.St

I1-0 -. 02 .90 .06 -. 60 .11 .11 .07 .03 .00 .41
31-20 w0 .00 .04 -.01 .03 -. 07 *.06 .03 .46 .06

PACP

$00 Observatioas
1 2 5 4 to g g i

las 1~n-1* .04 .0 -. .04 -. 02 -. 00 .02 -.62 .04 -.u
11.20 .5 .01 .07 -. 01 .12 .1) 0 .0& .10 .0

21.10 0 .01 .06 -. 04 .04 -.66 -. 06 .40 .03 .02

MXIMA120 ACV AM PACP OF RESIOUAL (MJUMA (..)

S6..

-U.8

U6.0

2379



r ~ ~A S.MA* OP ARMl (-) OWSW OMMEIN

___ lIMATU PAUNAPWT UAIML am 20. W422 "DIU

(1 (4 1 .@1(Z*I) **.01.6 1.412 it 0.0017

1.291 49741f. '.0

*2' .460

(2) 11-1.*2 0262S)lu J *.1.I 1.307

(3) 04. 1 1)(1 1 .U) .(1-60~a 1 I1 1.217

019 a. *IS9 .00*
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3. APPLICAT)ON OF ARIMA j(l,0,1) MODEL TO THE REMAINING SAflARM4 DATM.
In Section 2 the rationale for the selection of the ARIMA (1,0,1) model
was presented. In this section the remaining data for the non-target cases
are analyzed. The ARIMA (1,0,1) model was found to be adequate for modeling
the non-target SADARM data collected in Rome, N.Y.

The first step is to investigate more of this data. In Table VI, both
the ACF and PACF of addition3l samples of 500 observations at different
distances (30, 60, 90, 120 and 150 meters) were estimated. Plots of
both are presented in Figure 7. The similarity in the correlograms
indicate the possibility of modeling all the SADARM non-target data with
the same ARIMA model. Hence, Table VII was generated from other sets of
SADARM data using the ARIMA (1,0,1) model.

This analysis suggested that the means (p) are varying, but that
the autoregressive parameter (ý,) and the moving average parameter (8k)

are not. The estimated parameters (Va' CF) for white noise (random shocks)

are consistent for those cases investigated. That is la f 0.0 and
oa (1.62 to 1.79). A closer look at the residuals, at, indicates

a lack of any consistent pattern after fitting the ARIldA (1,0,1) model.
Figure 8 was -onstructed to demonstrate the lack of structure in the residuals,
indicating the ability of the ARIMA (1,0,1) model to characterize all the
SADARM non-target data. This ability to model the different cases by a white
noise model is used to simulate the sensor's characteristics. The ARII4A I
(.) model used for this purpose is that of Equation (6).

zt ( - 01 +at eat-3. *zt-l (6)

where at N(0, a ) and

are the estimated parameters.

A plot of one such simulated case is shown in Figure 9 as a comparison to theactual data plotted in Figure 2.

4. SUMKRY. The SADARM data collected in August 1978 was analyzed
using the Box and Jenkins Time Series approach. This approach indicated
an ARIMA (1,0,1) model. This particular ARIMA model characterizes the
data remarkably well. What is more remarkable is the consistent behavior

of both the estimated parameters ( 8 ) and the white noise parameters

Cat$ a ). The indications are that the ARI1A (1,0,1) structure is adequate
t'afor describing this set of SADAIR4 data.

REFERENCE
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TAILI VI

AMOCOSMIA1TO AM PARTIAL AVM'OLOVILATION PNLOcTINS OP Zt

"Acp
500 Observatiosw

2 2 3 4 a 5 7 0 9 10

5 Ulgs 1-10 .66 .63 .46 .31 .2? .21 .1? .JS .15 .As

(in0 a) 31-30 .I? .32 .2 1 .33 .3? .40 .30 .3 9 .S . u

It ILap 1-10 .8 .04 .48 .40 .15. .30 .24 .19 .30 .21
(120 a) l.20 .2 .33 .3S .3? .41 .47 .10 .47 .42 .34

N tag8 3-.3 .U .•8 .40 .35 .21 .20 .-5 .13 .14 .10
(D0 0) 11.2 .2f .2f .12 .41 .44 .53 .I3 .44 .3 .30

it Late 1.10 .87 . 0 .50 .sI .31 .34 .15 .06 .0N .0

(00 1) l1.20 .13 .22 .20 .I2 .33 .13 .So .26 .20 .14

it tags 1-10 .04 .44 .50 .42 .35 .2' .23 .1? .16 .1?
(50 a) It11. .23 .24 .29 .33 .3I .43 .44 .41 .35 .20

PAiPl

1 3 3 3 S 4 7 0 0 10

25 Logs 1-10 .II -. 43 .25 -.03 .03 .01 .03 .04 .O .02

I. Lags .10 .56 -. 41 .26 -. 01 .0% -. 06 -. 03 .00 .3 .09
(120 )

3ý Lagls -10 .IS -. 43 .32 -. 10 -. 01 -. 64 .0r .02 .0 .0
(00 a)

,als 1-10 .0? -. 39 .20 -. 06 .0o -. l3 -. 02 .00 .0? .u1

It Lalol 1-10 .8 -. 03 .33 -. 12 .02 -. 04 .04 -. 01 .0 .l
r (SO.a)
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TAILE VII

SUNNITl OF ABIIA (,0.1m NODEL FiTTED TO SADAIN FIELD AND TICE DATA

Cjps £82 Auuvst 1. 1916 (Field) ANIMA (i,0.1) ( -
, 1 61 ba C, s(37)

30 meters (a) -20.43 .7319 -.61j33 -. 00075 1.6412 19.11
(b) -24.11 .963760 -.11012 -. 000896 1.6323 66.01

60 Welor (a) .17.111 .71161 -. 4S6I4 -. 000674 1.1710 II.69
(b) .17.416 .79747 -.60213 -. 000316 1.6116 47.63

o etoer$ (a) - 7.54.7 .72107 -.6.127 .000163 1.6116 66.60
(b) - 0.2641 .66349 -. 67064 -. 0003039 1.62176 66.7

120 Meters (a) - 7.114 .71301 -. 56231 .0001229 1.1616 70.10
( - 7.909 .7172 -.67466 -.0000809 I.S1S9 14.47

110 meters (a) - 1.61 .71S2 -.S291 .000399 1.6231 41.30
(b) - 1.7179 .68901 -. 61730 .000671 1.6116 42.47

(C) 0.8284 .66971 -.67832 .0001374 1.1796 74.36

goesa /A .732691 -. 610632 -.0001333 1.618316
St. oev. N/A .040613 .047867 .000607 0.037661

• (.753:117

0701

Ciae A41 August 4. 1976 (Field) AtINA (1.0.1)

30 Meters (a) - 9.3986 .89142 -. S7673 -. 0002821 1.7341 42.10
(b) - 7.8494 .79993 -. 61042 -. O000496 1.7467 32.29

60 Meters (a) 6.6121 .67z21 -.S126 -.0005229 1.7910 41.26
(M) 1.4699 .B0169 -.66090 .0002416 1.1716 47.26

90 Meters (a) 23.MOS .68161 -. 62222 *.0000369 1.10039 5.20
MB) 23.037 .86254 -. 66396 .00031169 1.7621 61.01

120 Meters (a) 1.2613 .91947 -. 63143 .0003416 1.7566 61.01
(b) 1.4160 .92501 -. 62217 .0000963 1.7982 36.34

110 MRterS (a) -14.029 .6312 -. 67237 -. 000327 1.7767 39.40
(b) -14.726 .87666 -. 62124 -.0004966 1.9116 61.91

mass I/A .867027 -. 601644 -. 0000789 1.T1921
St. Dow. I/A .0421667 .04611t .00033697 0.061161

Case A41 Agu st 4, 1978 (Trees) ARINA (1.0.1)

30 meters (a) - 1.2039 .73473 -. 63486 -. 0001321 1.6602 69.66
(b) - 1.4091 .85164 -. 59693 -.0000661 1.747 47.10

60 moters (a) - 2.6013 .62067 -.60361 -. 0004S16 1.7232 37.90
(b) - 2.0361 .76270 -. 63814 -. 0001127 1.7423 16.36

90 Neter$ (a) 16.111 .72746 -.68936 .0002767 1.7499 4t.76
(b) 11.704 .63907 -.62629 -.0004$66 1.1141 74.76

120 meters (a) - 7.6494 .78241 -. 62126 .0001219 1.1704 41.77
(b) - 7.2249 .81781 -. 62216 .000946 1.1261 70.69

110 Meters (a) .1644! .1S606 -. 59373 -. 0002017 1.1191 13.10
(B) 9.OLr: .79941 -. 61361 -. 001264 1.1421 77.61

Mesa N/A .794621 -. 624002 -. 000136 1.71614
It. Dew. N/A .044026 .0217?1 .00067 0.07243
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THý ROQ OF SPATIAL BMAUWIDTH LIrra IN THL MEASURMaEN' AND IN'MPRETAT'ION
OF SECOND-ORDER STATISTICAL PROPITISS

9. L. Church
Technology Branch
Armaments Division

Firr,-Control and Small Caliber Weapon Systems Laboratory
US ARRADCOM

Dover, New Jersey 07801

ABS•RACT. Many important physical processes depend on the second-order
statistics of a random variable; that is, its autocovariance fuction or power
spectral density. The measurement and specification of surface topographic
finish is a case of particular interest to the Army. However, the spectra of
the profiles of manufactured surfaces are frequently of the power-law form
W - p-8, where p is the spatial frequency and s is a number ^- 1, 2. Con-
sequently, the classical spectral moments -- corresponding to the surface
height, slope and curvature variances -- diverge when these spectral densities
are extrapolated to very low and very high spatial frequencies, and one is
forced to give up the idea of intrinsic finish parameters and to deal with
bandwidth-limited values instead. There is therefore a critical need to under-
stand the role of spatial bandwidth limits in the measurement and specification
process. The present paper addresses this needs It discusses the role of
second-order statistical functions and moments in the surface-characterization
problem; the effects of bandwidth limits on the magnitudes of the spectral
moments and the relationship between profile and area moments; and concludes
with a discussion of the origin and magnitudes of the bandwidth limits in a
number of generic measurement situations.

1.0 INTRODUCTION.

.. 1 Ri•LEVANCE Ari PRO3LEM STATr10i1T. Surface-finish measurement, charac-

terization and specification are an important problem for the military and in-
dustry. this new interest in an old area is due to a number of factors: The
development of new manufacturing techniques for mechanical, electronic and opti-
cal surfaces; increasing emphasis on standardization, interchanneability and
reliability; cost savings inherent in realistic as opposed to over-specification;
and concerns for energy and material conservation.

The present standards for surface finish are stated in terms of the average
deviation of the surface profile from its mean. fhis is inadequate because it is
insensitive to the transverse character of the roughness and is only indirectly
related to the surface area, which determines the functional properties of sur-
faces.

The statistical basis for a more comprehensive description of topography was
developed many y ars ago by Longuet-Riggens in a famous series of papers concern-
ing ocean waves,L and has been adapted more recently to mechanical surfaces. 2

Unfortunately, however, this classical approach does not take account of two
related real-world situations: First, that measurement techniques and functional
properties of surfaces are sensitive to only limited ranges of surface spatial
wavelengths; and second, that the spectral densities of real surfaces are such
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that they do not "fit" into those wavelength windows. In fact, the spectra of

interest are frequently of a form which diverges when extrapolated to very long

or very short spatial wavelengths. The signature of the classical description

is that it is expressed in terms of intrinsic surface properties, while in fact,

one can only speak in terms of bandwidth-liUited quantities -- the observed and

the observation can no longer be separated.

We address three issues in this paper: 1) The classical generalization of

the characterization problem to include second-order statistical properties.

2) The effects of bandwidth limits on the nagnitudes of the profile- and surface-

finish parameters and the relationship between them, And 3), the sources of

bandwidth limits in various measurement situations. For simplicity we limit the

discussion to surfaces whose roughness is purely randon, isotropic, and weakly

stationary and weakly ergodic.

2.0 CLASSICAL DESCRIPTION.

2.1 FIRST-ORDER STATISTICS. The most general probabilistic description of

a random variable, Z, is given in terms of the N-th order joint probability die-

tributi on

where Zi s Z(xj,yi) is the surface height at the point i. The location and num-

ber of points, N, is chosen to provide adequate characterization for the purpose

at hand.

The simplest case is N a 1; the first-order height distribution function

P(Z 1) - JdZ2 .. fdZ nP(Z1 ... ,Zn) .(2)

The simplest example of this is, of course, the Gaussian

P(Z1 ) - (1/V/a)exp(_Z21/2a
2 ) (3)

where a2 is the height variance; that is, c is the standard deviation or

rms value of the surface height.

In practice the first-order height distribution function is characterized by

a set of finish parameters -- the central moments:

M n f dZP(Z)IZI_

where n 4 1, 2, 3, t correspond to the average surface height, the height vari-

ance, its skew and kurtosiu, respectively. The present US and international
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standards for surrace texture are stated only in termr of the average height:

R - 1 " Z J> - tim (1/2L) dxlz(x)l (5)

14
where < denotes the ensemble average and 2L is the sample record length.

2.2 SECOND-ORDER STATISTICS. The description of Z in terms of first-order
'1 statistics alone is clearly limited: it conveys no information about the trans-

verse character of the surface roughness. For example, the two surface profiles

have the sane first-order statistics but very different functional properties.
This forces one to consider the inclusion of higher-order distributions in the
characte-ization process.

The next step in sophistication involves the second-order Joint probability
distribution function

P(ZI,Z2 ) - dZ3 .. , dZP(Z 1 ,...(7)

The simplest example of this is again the well-known Oaussian result

P(ZiZ - (1/2w4 c-C2)exp(- (022 - 2Z 1Z2 '+ o2 Z2)/(2(o0 - C2 )] . (8)

Here C is the height autocovariance function.which may be viewed as the uimpl~st
Joint moment of the second-order probability distribution:

C(Xlx, 2  M 11  w f dZ~f dZPZt z1 z1 (9)

In contrast with the first-order case such moments are functions rather than nuw-

beors in this case a function of the two observation piints, xl and x . At the
partitular point 1 * x 2 , C a a the height variance. Further, if the sur-
face height is a weakly stationary random variable, the autocovariance is only a
function of the magnitude of the separation of the two observation points: the
lag T " I x1 -'X2•

2.3 SECOND-ORDER FUNCTIONS. The height autocovariance function and its
Fourier transforms form a family of functions that are used to describe the second-
order statistical properties of a random variable. If the height Z is weakly sta-
tionary and weakly ergodic the covariance function can be written in the equivalent
forms

(2L-t
C(T) - < Z Z > - -tim (1/2L) dxZ(x)Z(x + T) (10)
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T'hie onie-dimensional power spectral density -- which appears in the discussion of
surface profile data -- is the cosine transform of the autocovariance Lunction,

SW 1 (p) f (1/0f)J drcou(pT)C(T) - (l1a)

- Lim (1/2n)< (l/2L)i dxexp(ipx)Z(x)12 > (lib)

where the parameter p is the surface spatial wavenumber; that os, 2w times
the spatial frequency. The two-dimensional power spectral density -- which
appears in the discussion of isotropically rough surfaces -- is its zeroth-order
Hankel transform:

W2 (p) a (1/21f)J ¶drJ0 (pT)C(T) " (12a)

- Lis < (1/irR2 ) 1  xdxJ0 (pX)Z(X)]
2 > (12b)

where Jo is the ordinary Bessel function of zeroth order.

When Z is weakly stationary -- that is, the power spectra are derived from a
couon autocovariance function according to Eqs. (l1a) and (L2a) -- the one- and
two-dimensional power spectra are related to each other through the Abel transforms

W (p) 2 tdt W2 (t) (13a)Wl(P) T =t 2 r2 _ p

and

d t di

These integral transforms are related to half-integral and half-derivative opera-
tions, respectively. Convenient tables of Cosine, Hankel and Abel transforms are
given in the Bateman collection. 3

Figure I is a sketch of the various interrelationships among the various
quantle discussed above. A particular trio of functions which are relevant
to the following discussions is given in the Appendix.

2.A SECOND-ORDER FINISH PARAMETERS. The second-order statistical functions
discussed above may themselves be characterized by a set of finish parameters
corresponding to the central moments of the power spectral densities, Spicifically,
the even n-th order profile moments:

n f dn/2
l dx" 39
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These moments have direct physical meanine as indicated on the rights mO is the
variance of the profile height, m2 is the variance of the profile slope, and m4
is the variance of the profile "curvature". A similar set of moments can be
defined for the two-dimensional spectral density:

S• ,, v~n(n/2)Z~)2>(•
2Jn pdpW2 rP)p a K Ir2) (15)

0

As indicated on the right, M0 is the variance of the surface height, , 2 is the
variance of the surface gradient, and M4 is the variance of the Oaussian curva-
ture of the surface. The immediate value of these moments in determining the
functional properties of surface roughness is obvious.

The relationship between the profile and area moments is of critical impor-
tance in the measurement and specification process since the traditional method
of measuring surface finish is by means of a stylus gauge -- which measures the
surface profile -- while the functional properties of surfaces clearly depend on
their surfaace properties.

If the surface roughness is weakly stationary, the two power spectra are
related -- by Eq. (13) -- and therefore, so are their moments. In particular,

mn r((1/2}[n + 1]) (16)
-n r(l/2)r((1/2}(n + 2))

where r is the gamma function. This result says, for example, that 0 "Me,
which means that the profile roughness equals the area roughnesel m2 00% M2,1

which means that the variance of the profile slope is half tnat of the surface
gradient; and m4 : 3/8,M which means that the variance of the profile curvature
is three-eighths of the &aussian curvature of the surface. All this, of course,
for an isotropically rough surface. 0 traightforward generalizations to aniso-
tropic surfaces have also been given.

2.5 CLASSICAL SOLUTION. We call the above the classical solution to the
characterization problem. It has a number of attractive features: I) It repre-
sents the next step in the systematic generalization of the present finish stand-
ards which includes the transverse as well as the vertical character of the
roughness. 2) It is stated in terms of a set of finish parameters which have
direct physical meanings the rms values of the surface height and its deriva-
tives. 3) It provides a direct relationship between profile measurements --
which are easier to make -- and the properties of the surface area -- which
determine its functional properties. And 4), the scheme on which it is based is
readily generalizable to include higher-order statistical properties -- if and
when required. In fact, if the roughness can be taken as a full Gaussian process,
the probabilistic description tp arbitrary order may be described solely in terms
of its second-order properties.-' In that case, a wealth of results concerning
the surface can be expressed in verms of the first three profile moments, P m2
and mh discussed above. Examples are given by Longuet-Higgens and others. 1 ,
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3.0 RMAL ISJV(ACi•Z.

3.1 M1CflANICAL SURFACES. The traditional method of measurine surface rough-
ness uses a stylus gauge to determine the surface profile Z(x). This is usually
used for "mechanical" surfaces; that is, surfaces generated by machining, grinding
or lapping processes, which generally lead to surfaces with vertical roughness of

> I microinch (25 nanometers).

Such surfsces very frequently exhibit power spectral densities of the form

W () -2 (17)

where p - 2n /d is the surface spatial wavenumber and d is the surface spatial
wavelength. 5 This result says that the profile power spectral density is propor-
tional to the square of the spatial wavelength, or equivalently, that the rough-
ness is scale invariant: it is statistically the same at all magnifications.

The ubiquity of this "inverse-square" law is amazing, and a number of models
have been invoked to explain it. One is that "machining" processes lead to sur-
face finish involving numerous vertical edges. 6 In other words, the surface pro-
file can be viewed as a kind of telegrapher's signal. However, this same spectrum
is also exhibited by Brownians Markov and autoregressive processes, and its appear-
ance in nature probably lies more in the multiplicity of the processes that exhibit
this behavior than in a common physical origin.

3.2 OPTICAL SURFACES. Optical-quality surfaces generally have roughnesses
of < 1 microinch and are difficult to measure by mechanical stylus techniques.
An alternative method is to measure the angular distribution of the intensity of
light scattered from the surface, which is a simple mapping of the two-dimensional
power spectrum of the surface height when the vertical roughness is much less than
the radiation wavelength.

Although this art is in its infancy, available data suggest that polished
optical surfaces frequently exhibit spectra which, when translated into the one-
dimensional form, correspond to

W(p) p-(-1

This behavior has been interpreted in terms of a surface-tension model in which
polishing is viewed not as a cutting process per se, but a smoothing operation 6
which minimJ.zes the excess surface area due to the residual surface roughness. 6 ,7
Superficially, Sq. (18) resembles I/f electrical noise; another ubiquitous form
which also derives from a variety of physical processes in nature, Other inverse-
power-law forms have been reported for polished surfaces as well.

3.3 LIQUID SURFACES. Liquid surfaces exhibit a variety of height distribu-
tions depending on the nature of their excitation. Simple forms for the power
spectral densities appear in two limiting casess Capilaa waves which are gov-
erned by surface tension and lead to the h form, Eq. klO); Ind the
"fully aroused sea" which exhibits an inverse-c profi e .
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too fact that mechanical, polished and liquid surfaces all exhibit approxi-
mate inverse-power-lIw spectra with interral (or half-integral?) exponents sug-
gests a deeper physical connection between surface roughness, the properties of
the surface medium, and the roughening process. A first cut at understanding
this interesting situation has been given in terms of a shot model of sur ace
rouchness coupled with the asymptotic properties of the Fourier integral.o

3.4 PRACTICAL INPLICA1IOMS. The imediate significance of these results
lies less in their specific algebraic forms or their physical origins, than in
their ill-behavedness -- that is, they can cause the moment integrals, Eqs. (114)
and (15) to blow up when the power spectra in the intearand are extrapolated to
very small or very large spat3.al frequencies.

One can adopt two views of this: The classical view holds that this situa-
tion is an artifact of the measurement process; that if measurements were made
over a sufficiently wide range of spatial frequencies the spectra would ulti-
mately become well behaved and their moments finite. The radical view is that
intrinsic surface parameters such as the classical spectral moments are operation-
ally undefined -- if for no other reason than that the spatial wavelengths in-
volved can't be smaller than atomic dimensions or larger than the size of the
workpiece -- and the real world can only be discussed in terms of banwiddth-
limited values of those parameters. Further, that even if "intrinsic" parameters
could be defined and measured by some extrapolation procedure, the results would
be of no practical value since the functional properties of surfaces -- as measure-
ment processes themselves -- depend only on a limited range of spatial wave-
length!. Other workers have described surfaces exhibiting such ill-behaved power
spectra as non-stationary.S

Philosophy aside, the practical implications for surface-finish measurement
and specification appear to be the following: 9 1) Surface-finish parameters are
not intrinsic properties -- one cannot speak of a "1-micron surface" but only of
a surface which exhibits a 1-micron roughness over a certain range of spatial
wavelengths. 2) The effects of bandwidth limits upset the classical relation-
ship between the profile and area moments. 3) One must understand the details of
individual measurement procedures to be able to specify the range of wavelengths
included in the measured values, both for specificity and to ensure valid compari-
son with other measurement processes. And 4), one must understand the functional
properties of surfaces in enough detail to be able to estimate
the range of spatial wavelengths to be included in any specifications for such
surfaces.

Items 1, 2 and 3 are discussed at greater length in the following sections

of this paper.

4.O EFFECTS Or BANDWIDTH LIIfITS.

4.l BANDJIDTH-LIIITED MCMENTS. Bandwidth-limited values of the spectral
moments are defined as

Mn(dmin, dmax) 2 pmax W(p)p (19a)
Pmin
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and

Mn (d mndmax 2rjpmax pdpW2 (p)p n (19b)
Pmin

where

-2rd* p =21/d (20)

Pain " 2w/dMax Pmax min(

are the minimum and maximum spatial wavenumbers included in the definition or
measurement. When these limits go to zero and infinity the bandwidth-liUmited
moments become the classical results, Eqs. (1i) and (15).

4.2 RING-SPECTRUT4 SURFACE. The properties of the bandwidth-limited moments
can depend sensitively on the bandwidth limits and the shape of the power spectrum.
To illustrate the dramatic effects that are possible we begin with an extreme
example, that of a ring spectrum:

W2 (p) 6(p - po) (21)

where 8 is a delta function.* Such surfaces could be realized by superimposing
a set of sinusoidal corrugations with a fixed spatial wavelength, do - 2w /pO, in
random directions over the surface. A beam of light striking such a surface nor-
rmally would then be diffracted into a "ring" of light at the polar angle given by
the grating equation, Sin e - X /d , where X is the radiation wavelength; hence
the name. The corresponding one-dimensional power spectrum is, from Eq. (13a):

Wj(p) - 2Po/p-2_ p2  (22)

for p < Pot but zero otherwise. These two spectra are sketched in Fig. 2.

The striking difference in their form is due to the wave-on-the-beach phenom-
enon- A surface wave of wavelength do exhibits a longer wavelength, do,/Sin ý ,
when viewed along the shores

(23)

"0 CI o/SIN t?

"*For simplicity a normalizing factor with the dimensions of length3 has been
suppressed on the right of Eq. (21).
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The classical moments of the ring-spectrum surface are riven by

Mn-2P (24)

plus the moment ratio, Eq. (16). However, the bandwidth-limited moments are very
di fferent.

Look at Fig. 2, and begin by ccnsidering the situation where the spectral
window falls entirely above po; that is, pmin > po. In that case both the pro-
file and area moments vanish and the surface appears to be perfectly smooth. If
the spectral window is now moved downward to include the point p a POs that is,

Pmin <p•P < p m", both the profile and the area moments will be nonvanishing, al-
though they only-satisfy the classical moment ratio when Phin - 0. And finally,
when the spectral window is moved entirely below PO, that is, Po > pmax, the pro-
file moments are still nonvanishing but the area moments are identica1ly zero. In
other words: the surface is rough to st: as measurements but smooth to scattering
measurements even though both measurements are made over the same range of spatial
wavelengths £

Although ring-spectra surfaces are not encountered in conventional manufac-
turing, the point is still well made that bandwidth-limited finish parameters can

have very different properties from intrinsic parameters of the same surface:
Both their magnitudes and the relationship between the profile and area proper-
ties are affected. Such effects are examined below for more realistic surface
spectra.

4.3 PO4ER-LAW SURFACES. Suppose the profile power spectrum measured over a
limited range of spatial frequencies has the form

W1(p) = p-s (25)

where s is a number.* In order to obtain the corresponding form of W2 we must
know W to infinitely high spatial frequencies. If we take the inverse power-law
form snown to be valid into that unmeasured region, Eq. (13b) shows that the cor-
responding form of the area spectrum is

-s-(26)
w2 (p) - F(s).p

where

r({1/2)(9 + 1]1227
F(s) 

(

r(1/2)r({1/21})

*For sim'plicity a normalizing factor with the dimensions of length(3-s) has been
suppressed on the right of Eq. (25).
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Given these analytic rorin:, for the powcr spectra we carn easily calculate.
the ma•|nitudu3 of the bandwidth-limited spectral moments, Sq. (19). Rather than
giving the obvious aleebraic forms, values are givon in Table 1 for selected
values of s and n.

In all cases the magnitudes of the moments depend explicitly on the minimum
and maximum spatial wavelengths included, and diverge in the Iimit Pin-9-)- 0
and/or pa -4'- co . However, the precise dependences, and the sensitivity of
the results to variations in the finite wavelength limits, depends on the case
considered. For example, for machined surfaces 3 - 2, the rms profile height,
slope and curvature scale approximately as d--- d_'S- and d_,,- 3 / 2 , respec-

tivl- 10 While for Polished surfaces, :s ,tesclas oghd,/~)
drin" and d-rin" 2 . For the cases of interest the slrpe and curvature parameters
are generally most sensitive to drin, as expected physically.

4.4 PROFISE-AREA REIATIONSHIP. The relationship between the profile and
area parameters is determined by the moment ratio NN. For power-law spectra
this ratio is simply

=n r(9/2) (28)
Mn r(l/2)r({l/2)[s + 1])

which has the values of I, 2/i and 1/2 for s - 1, 2, and 3. This result is to be
compared with the corresponding classical expression, Eq. (16).

There are a number of interesting similarities and differences: Both re-
sults are independent of the bandwidth limits, although this is an "accident" in
the case of the power-law spectra. The bandwidth-limited ratio depends only on
the shape of the power spectrum, i.e. the parameter a, and is independent of
the moment order -- further accidental properties of the power-law spectra --
while the classical result is independent of the spectral shape and depends only
on the order, n.

The simplest way of displaying the magnitudes of these differences is to
examine the ratio of the surface moments derived from a given set of profile
moments using the classical and bandwidth-limited ratios, Eqs. (16) and (28):

Mclassical
n rP i, + 21/2) r(s.2)(29
bw-limited r([n + 1)/2) r((s + 1]/2) (29)
n

Values of this ratio are given in Table 2 for particular cases of interest. They
indicate that the numerical error introduced by using the classical recipe is
moderate for the lower moments of machined surfaces, s - 2, but more significant
in other cases. Once again, however, these results apply only to isotropically
rough surfaces exhibiting power-law spectra to infinitely high frequency.

If the measured profile spectrum cannot be extrapolated to infinite fre-
quency, the corresponding form of the surface spectrum cannot be determined, and
the profile-area trirslation is impossible. This follows from the form of the
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* Abel transformations which relate W1 and V12, Sq. (13): W (p) depends on the
* form of Wl(t) for all t P p, and conversely. This situation indicates the

essential rolethat odels play in the discussion of surface-finish measure-
ments and specification, since it is only through faith in empirical or physical
models that one can justify the extrapolation procedures required for trans-
lating profile data into area data, or vice versa. The ability to accomplish
this is critiýcl since present finish standards are given in terms of profile
measurements. L

4•.5 CIASSICAL SURFACgS. The classical view is that all power spectra are
naturally well behaved and only appear to be ill behaved over a limited range of

L spatial frequencies. Or to put it another way, the ill-behavedness lies in the
use of improper extrapolation functions.

Roughly speaking, the high-frequency tail of the spectrum determines the
properties of the higher moments while its low-frequency behavior determines the
lower moments. In the case of power-law spectra discussed above a simple ex-
trapolation to high frequencies was sufficient to establish the profile-area
connection, but the classical moments still diverge either at their upper or
lower limits. Such behavior is, of course, classically unacceptable.

A v-th order classical spectrum may be defined as one whose classical pro-
file monents, mN, are finite for all n < 2v . Thus, a first-order classical
surface possesses a finite height variance, but no higher finite moments. A
Cauchy spectrum, derived from a simple exponential 4utocovariance function, is a
familiar example of this type. A Gaussian spectrum, on the other hand, is an
infinite-order classical spectruLn: all of its profile moments are finite.

ro achieve finite classical moments the measured spectra must be extrapolated
with rounding functions which kill the divergences, especially at low frequen-
cies. However, those rounding functions will necessarily involve new length
parameters -- such as correlation lengths -- in place of the window wavelengths
in the bandwidth-limited case. The resulting classical moments, although finite,
will then have different (larger) magnitudes, and will depend on different sets
of physical parameters than the bandwidth-limited values.

The preceding discussions were principally concerned with moment ratios in
which these additional parameters do not appear. A detailed discussion of a
particular rounding of the low-frequeney tail of the inverse-power-law spectra is
given in the Appendix.

5.0 SOURCES OF BAT•NID'N LIMITS. The preceding Section illustrates the im-
portance of bandwidth Tlmite in h haraterization of surfaces with ill-behaved
power spectra. This Section discusses a number of sources of such limits in com-
mon measurement processes: to emphasize that all measurements are inherently
bandwidth-limited, and to indicate how the magnitudes of those limits arise in
practical situations.

5.1 ;LUCTRONIC -IL[-YING. Mechanical stylus measurements involve drawing a
fine diamond-tipped stylus over the surface being measured, converting the tip
motion into an electrical signal, and analyzing the resulting time series in terms
of the surface profile, Z(x). However, the output represents not the true profile
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but the apparent profile Z'(%,:

Z'(x) -IXG(p)'{Z(x))) (30)

where 7 denotes the Fourier transform and G is the transfer function of the
measurement system, which is usually dominated by electronic filters or
"cutoffs". The power spectral density of the apparent profile is then

W'Cp) - IG(P) 12'W (P) (31)

where ll(p) is the true spectrum. The form of G(p) depends an the nature of the
filter. For example, for a simple N-stage RC bandpass filter the low- and high-
frequency cutoffs behave asymptotically as pt2N, respectively:

2. -V (32)

5.2 STYLUS SMOOTHING. Mechanical styli act as a low-pass filter since
they tend to ride over height fluctuations with spatial wavelengths smaller than
the tip radius.

One measure of the high-frequency cutoff that appears frequently in the
literature is obtained from the model of a circular tip riding over a set of
sinusoidal corrugations. Simple geometry then shows that the requirement that
the tip track into the valleys is equivalent to the statement that the maximum
undistorted spatial frequency is

Pmax - (aR)-!2 (33)

where a is the amplitude of the corrugations (half the peak-to-valley distance),
and R is the radius of the stylus tip. For example, a - I p and R - 1 F require

that dmin ^-s 6 p.

This result can be generalized to a randomly rough surface by replacing the
geometrical condition by the requirement:

m4 < a-2 (34)

which states that the rns profile curvature must be less than that of the stylus
tip. A sinusoidal profile has the spectrum -W - &aC 6 (p - p which leads
precisely to the geometric result, Eq. (33). On the other hand, the spectrum
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•2p- gives

•max• 113P•,ax 2 ft -0--tvz (35)

*- where i� is the height variance and amax is the maximum spatial wavelength in-
cluded in its measurement. For example, R a I p,, a I a and d,.a. 103 give
dan 8 p. Similarly, for a spectrun of the form W - p-

Pmax aR (3)

where log a ln(dmax/dmin). For the same parameters as above, this gives d,,dn ^' 3 o.

Interestingly, although each of these three examples gives values of the min-
imum undistorted spatial wavelengths which are of the same order of magnitude as
the tip radius, none of the expressions derived predicts proportionality between
dmjn and R. Also, the non-intuitive form of the factors in Eq. (36) is more
apparent than real: the quantity log/o 2 is a simple constant, as seen from
Table 1.

S.3 APERTURE SMOOYIHTO. Optical stylus measurements produce an apparent
profile which is a smoothed version of the true profile. In one-dimensional
terms

Z'(W) - dtw(ct - x)z(t) (37)fm

where w is the window function of the apparatus. The power spectral density of
this smoothed profile is then

w(P)- n(p).-W(p) (38)

where Wi is the true spectrum and

Q(p) - If dxe ipx (x)12 (39)

is the window transfer function. Such smoothing, of course, acts as a low-pass
filter with the nominal cutoff

Pmax a 2r/A (40)

where A is tie width of the smoothing window. The precise form of the transfer
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function depends on the window ahape: A Gaussian window gives a Gaussian 0;
a zectangular window, a Sine 2 function; a cylindrical window, an Airy function,
and so on.

Soh SMSOAUNG. Surfboarding arises from the fact that profile measure-
ments are usually made with reference to a local rather than an absolute base-
line. That is, one usually measures not the true profile, Z(x), but

Z'(x) - Z(x) - (a+bx) (Il)

where the term in parentheses represents the least-squares-average line through
the individual records. The apparent power spectrum is then a convolution of
the true spectrum of the formll1 p

W'(p) - L- dq[ - n- C]2W (q) (42)

where the three functions in the kernel are

a . 0 (pL - qL) (h3a)

n - Jo(pL)j 0 (qL) (43b)

S- 3j 1 (pL)J 1 (qL) (43c)

and the J's are spherical Bessel functions. The 4 term corresponds to the
finite record length, 2L; the n term to the removal of the averace from each
record; and the 4 term to the removal of the least-squares slope from each in-
dividual record in the ensemble. In the limit of very large record length the
kernel becomes a 6 function and We -V- W for p > 0, as expected. Numerical and
analytic evaluation of Eq. (42) shows that surfboarding acts as a high-pass filter
which cuts off spatial frequencies below

"l ' /L 0 (Ij)

where the shape of the cutoff depends on the form of W.

The nature of this effect is sketched in Figure 3. It is called surfboarding
because, in effect, the baseline for a finite recor-d ength "surfboards" over
the surface profile and measurements relative to that baselene are Eqsinsitive tovery long spatial wavelengths, In fact, it is readily seen from Eqs. (42) and (43)
that the apparent power spectrum vanishes at zero spatial frequency.
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5 .5 S0FACE ScATTr•RING. Light atid acoustic scatterine offer a means for

thc direct neo uremont of the two-dimensional powor spectra of the surface
roughness, W2 . In such measurements tho scattering angle is related to the
surface spatial wavelength, d, through the familiar grating equation:

Isne5  - snO I - X/d (45)

where ei and es are the polar angles of incidence and scattering, respectively,
and X is the radiation wavelength. This equation follows from the spatial
invariance of the electromagnetic or acoustic equations and is independent of the
details of any specific scattering theory.

In practice, the scattering angle, Os, is limited to a maximum of w/2
glancing scattering -- and a minimum of 1s9- e O J A A., where 2L is the dia-
meter of the illujid.ated surface area. Interestingly, there are at least three
mechanisms that determine this minimum scattering angle: The diffraction liUt
corresponding to the finite illuminated surface aperture; the requirement that
the maximum spatial wavelength be smaller than the record length to ensure sta-
tistical stability of the measurements; and finally, surfboardings, as described
above. This last enters through the fact that the record mean and slope are
automatically removed in aligning the scattering apparatus with reference to the
centroid of the specular reflection for each sample area.

For the usual case of near-normal incidence the spatial bancwidth limits
involved in scattering measurements are

2-w > > 2w
-- a P = r- (46)

or equivalently, dmin•J X and d... e L. Practical limits generally fall well
within these extremes. For example, for a beam of red HeNe laser light 1 mm in
diameter, dmi % 1 p and dmax fo 100 y.

6.0 SIVARY, CONCLUSIalS AND REC010ENDATIONS. Classical discussions of
surface topography assume That the power spectral densities of the profile height
Wl(p)v the profile slope pNW1(p), and the profile curvature puW.(p), are inteo-
grable over spatial frequencies from zero to infinity. This leads to the satis-
fying picture that the rms surface height, slope and curvature are finite,
intrinsic surface-finish parametersj and further, that there io a one-to-one
connection between profile properties and those of the surface area.

However, there are two serpents in this Eden of simplicityi Measurements
and functional properties of surfaces are sensitive to only lAited ranges of
surface spatial wavelengths, and many surfaces display spectra that lead to non-
integrable power spectral densities when extrapolated to very low and/or very
high spatial frequencies.

As a results
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1) Tho range of spatial wavelengths must be included in measured or
specified finish parameters; for specificity, to ensure valid comparison with
other measurements, and for functional applications.

2) Measurement techniques must be analyzed to determine the range of
spatial wavelengths which they include; or better said, their frequency charac-
teristics or transfer functions.

3) Functional properties of surfaces must be exanined to determine the
range of spatial wavelengths of importance. In the case of electromagnetic and
acoustic scattering this function-finish relationship is well known, but in
other cases , such as friction and wear, the connection is not as clear.

i) Plsical models should be developed for the finish generated by various
manufacturing processes. These models are necessary for the further understand.
ing of the generation process, the simplification of the specification process,
and the extrapolation of measured spectra into unknown regions. Such extrapo-
lation is necessary for the broadening of the range of application of various
measurement techniques and for relating profile and area specifications.

5) Bandwidth-lUnit effects discussed in this paper should be extended to
other important issues involved in the measurement and specification processes
which have been omitted in the present discussion: such as two-dimensional
me ent techniques, anisotropic surfaces$ sampled data, and statistical sta-
bility.13

7.0 APPROD. This Appendix describes a classical trio of second-order
statistical functions which behave as the inverse power-law spectra discussed in
the text at high spatial frequencies, W1 - p-s but which possess finite spectral
moments, n, for all n <a - 1. These functions are related by the Fourier,
Hankel and Abel transformations illustrated in Fig. 1.

The autocovariance function is

r-1/2 (a - 11/2!(
c(x) - 2Dgr(--/2 (K.)[ - 1J/2(aT) (47)

where r is the gana function and K is the modified Bessel function. Dg
is a constant having the dimensions of length to the (3-s) power, and a is. a
constant with the dimensions of reciprocal lengths 1/a is the "correlation
length" for this class of functions.

The corresponding one-dimensional power spectral density -- the cosine
transform of C -- is

Wj(p) - Do(p 2 + a2)8 1 2  
.

(148)

The two-dimensional power spectral density -- the zeroth-order Hankel transform
C -- is
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PVT

W2 (p) - D F(s) (p 2 + a2)- [+11/2 (b9)

where

F(s) - 1(1 (50)
2'2

and B is the beta function

B(ci,B) - r(c•)r()/r(c + •) . (51)

In the limit p >> a -- that is, for spatial wavelengths much shorter than 2w/a --
these spectra become the simple power-law forms discussed in the text: eqs. (25)
- (27).

The classical moments of the spectra, Eqs. ( 1 8 ) and (1j), ares

n+l s-n-i n+l-s
- Ds *B( -2).a (52)"a 2 ' 2"

and

1 n+lM ,'( , -W)., (53)
n -2 "'

The ratio of the classical prcfile moments to the corresponding bandwidth-limited
values is then

classicalm an -on+l 8-n-i a max n+l-s
bw-limited ' 2 )(5)

in the limit deX>> dmin. This ratio indicates the conjugate roles of the cor-
relation lengand the maximum spatial wavelength in deternpning the magnitudes
of the classical and bandwidth-limited momente, and the fact that the former
moments are much larger than the latter.

Two special cases of the above general results are of particular interests
S I and S 2.
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For a"1:

C(T) - 2D1K0 (ar) (5Sa)

W(P W DIjp2 + a21-1/2 (5)I

-1w2 (p) W (D/71)[p 2 + a2F- (%c)

and for a * 2:

C(T) 71 (D2 /a)e-a T  (56a)

W1(p) D 2[P2 + a2] 1  (56b)

W2 (P) " (D2 /2)(p 2 + a2 / (56c)

These two cases represent zeroth- and first-order classical surfaces, respectively,

in the sense defined in Section h.5.
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able 7. 3 , X :ind C stand for
the Fourier, Ilankel and Abel
transforns di3cussnd in the text.
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Figure 2. The one- and two-dimensional
power spectral densities of a
"ring-spectrum surface".
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Figure 3. Surfboarding in configuration space (top),
and in frequency space (bottom). The
local reference "surfboards" over the sur-
face profile and washes out spatial vw-v-
lengths longer than the record length, 2L.
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Table 1. Bandwidth-limited values of the profile
and area moments corresponding to the
profile spectra shown. Results are
given in the limit dmax ,> d Here
log a In (dmax/dmdn). Dimensanal con-
stants have been suppressed.
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Table 2. Rati o of the area moments mnclaaiecal/A~w-limited
calculated from Sq. (29) for" "-different profilespectra of the form W -
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Abstract

Lindstrom-Madden type approximations to the lower

confidence limit on the reliability of a series system

are theoretically justified by extending and simplify-

ing the results of Sudakov (1973). Applications are

made to Johns (1976) and Winterbottom (1974).

Numerical examples are presented.
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1. Introduction and Summary

A problem of fundamental interest to practitioners in

reliability is the statistical estimation of the reliability of a

system using experimental data collected on subsystems. In this

paper, the subsystem data available consists of a sequence of

Bernoulli trials in which a "one" is recorded if the subsystem

functions and a zero is recorded if the subsystem fails. Thus

for each of the k subsystems composing the system, the data pro-

vided consists of the pair (n,.yi), i-1,2,...k, where Y is

binomially distributed (ni,pi). We assume that Yly2,""1.,k are

mutually independent random variables.

The magnitude of interest in this problem is easily evidenced

by the extensive literature devoted to it. In this regard, see

the survey paper by Harris (1977) and Section 10.4 of the book by

Mann, Schafer, and Singpurwalla (1974). In addition, the Defense

Advanced Research Projects Agency has recently issued a Handbook

for the Calculation of Lower Statistical Confidence Bounds on

System Reliability (1980).

Historically, the first significant work on this problem was

produced by Buehler (1957). However, Buehler's method as des-

cribed in that paper is difficult to implement computationally

when k>2.

We proceed by describing Buehler's method in Section 2. In

Section 3 we specialize to series systems, that is, a system which

fails whenever at least one subsystem fails. Sudakov's (1974)

results are extended in Section 4 and employed to exhibit some

optimality properties of the Lindstrom-Madden method (see Lloyd
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and tlpow (1962)) for constructing lower confidence bounds for

the reliability of series systems of stochastically independent

subsystems. Some numerical examples are &iven in Section 5 and

the results needed for this generalization of Sudakov's Theorem

are provided in the Appendix to this paper.

2. Buehler's Method for Lower Confidence Bounds

A system composed of k Independent subsystems is said to be

a coherent system (with respect to the specified decomposition

into subsystems), if the system fails when all subsystems fail

and the system functions when all subsystems function; and replac-

ing a defective subsystem by a functioning subsystem can not

cause a functioning system to fail. Coherent systems are des-

cribed in Birnbaum, Esary and Saunders (1961) and Barlow and

Proschan (1975).

To any system one can associate a functioa, h(p) -

h(pl p 2 ,...,Pk)., Opi~l, i-1,2,...,k, where h(p) is the reliabil-

ity of the system when p is the probability that the ith

subsystem functions. It is well-known that if the system is

coherent,

0 < h(j) < 1

h(O,...,O) - 0, h(l,...,l) a 1,

and h(pl,... ,pk) is non-decreasing in each variable.

For coherent systems, Buehler's method may be described as

follows: The observed outcome (yl,...yk) can assume any of
k

n (n (ni+l) values, since yi W 0.l,...,n . For convenience,
ift1

we denote ni-yi by x t, i-1 ,2,...,k.
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A partition (AVA 2t .. ,A 1' s>l, of the N possible outcomeei

is said to be a monotonic partition, that is, A <.A2 ..(<A if

(0,0,...,0) E Al (Dnl,u 2 ,...2nk) E A and if (X -( ,.,lk

'2 f (X21'' ''X2k) vith Xl < 1 ail, -,2,....,k, then l

implies C2 C Ai, j

Let

f - p.(i- - x Yx ni-Yi (2.1)

and for 1 < n < s-1, let

an = p) f C, (2.2)

and a "0. O. CA 1,i<n

Each such partition may be identified with a function defined on

the set of sample outcomes by defining the ordering function

g(•), where

g(i) " n if x - A , lAn<s ; (2.3)

obviously g(i) inherits the monotonicity properties of the

partcit ion.

Sp tSubsequently it will be convenient to use ordering functions

g() such that the range of" g() will-be a finite set of real

numbers, r 1 <r 2 .. r. With no loss of generality, we can identify

the sets AI by defining AI - {IS(i) - ri}, i-l,2,...,s. We can

now establish the following theorems.

Theorem 2.1. Let j be distributed by (2.1). Then a g() is a

(1-a) lower confidence bound for h(p). If bg(D) is also a (1-OL)

lower confidence bound for h(•), then b1(a1 , <i<is.

Proof: Fix • and let n(ý) be the smallest integer such that
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Pýý C AjI (2.4,)

1 and

{ic Ai -C (2.5)

* Let VI
D< i'U A2

Then D is a 1-a confidence set for p, since

SPi r D -jjg(!) > n(j)j > 1-O (2.7)

This establishes the first part of the conclusion. Further, since

h(;) is concinuous and O<p 1 <l, the infimum in (2.2) is attained.

Now assume that i1 is the smallest index such that bit>all

1<ii<_S-1. Then, for som.e po 0 I 0 i

NOV i, l i

b a(x-.l) > . h (pl < .I
x i Ai, i<_lI

Therefore

P eh(a b > ,II x Ai, i<..i 1

a contradiction. '

Remark. Let d n - sup i1-b(P-)l x CAx;P I a). Then d nIs a

(l-a) upper confidence bound for 1-h(ý), the unreliability.

Let A - ;CE k 0 O<.x i<a,, i-1,2,.*..,k and let $(i) be contin-

uous on A (the closure of A) and strictly increasing in each
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t variable for ;CA. g(i) is to be regarded ar an ordering function

as described immediately preceding Theorem 21. We require the

following additional property of g(;).

Fix 0oCA. Let g(i ) •" 3" Then

00. S(Yl,,...,O g (•o) has 8 unique solution in Yl" Proceeding

recursively, let i < Y and define -Y 2ltan 
as the solution

of g(i ) - g(FloY2r0'''''0). For each I<J<1k and I J-1

j -2 < yj-2''' Y1 9 let Yj . yj(ilvi 2 '....IJ-1) be the

solution of

g(;o ~li,.,i~~j0..0 (2.8)

We require that the equations indicated in (2.8) have

unique solutions for each yj*

Then define

IYI] lY21 1yk)

*** O~)-I . f(i;p) , (2.9)

1 0 12-0 iko

where, for J>l, y- Yj(il.i 2 ,"' . %1). Let

f(o - asup F(;o;P) , 0<a<l . (2.10)
h(ý)-a

Then we have

Theorem 2.2. If i satisfies in f *(x ;a) = 0, sup f*(xo;a) 0 1

O<a<l Oa<l

and f (xo0;a) is a strictly increasing function of a, and if

o 0 An where g(R) determines (A 1 .A 2 ,---.A )a and if

b -isf h(P)j f ai 1 i (2.11)
SJ ~xtA i 'i<n

then we have

f (xo;b) - C•
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Proof: Since the infimum in (2.11) is attained, there is a

such that b a h(p ) and F(xo;po) " a. Then f*(xob) I. if
0o 0

f (xob) > a, there exists P ,with a - h(G ), a<b and

f (Xo;a) a C contradicting (2.11).

Obviously, the above discussion can easily be modified to

obtain upper confidence bounds on the unreliability l-h(j) by

replacing inf by sup in (2.11) and requiring that f (a;a) be a

strictly decreasing function of a, O<a<l.

3. Applications to Series Systems

k
For a series system h(s) - B Pi" Further, throughout this

i-i

section we assume that g(R) satisfies the conditions necessary to

insure that the solutions for yl,...,Yk indicated in (2.8) are

unique. Then we have the following theorem.

k
Theorem 3.1. If h(p) n pi, then inf f (R ;a) - 0.

i 1 O<a<l
"sUP f (X ,a) - 1 and f*(o ;a) is strictly increasing in a,

O<acl 00

whenever xo~ (Xo 1 ,..9x ok) satisfies xj < nj 2,...,k

Proof. Since h(1) - 1 if and only if Pi 1, 1-1,2,...,k, it

follows from (2.1) that

lia sup F(o O;) 1

a.l h(f)-a

Similarly, h(j) - 0 if and only if at least one pi 0,

i-l,2,...,k. Since F(io ;f) ?P {XI<ni l-P Xi ni - -n

we have

lim sup F(o ;P) a 0
a.O h(i)ns 0

To show that f (R ;a) is strictly increasing in a, consider
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Ocacb<l and let s * (Pal 'Ps ) satisfy f*(; a FU o; , a

Similarly, let Pb satisfy f(i ;b) - F(i 0o; • Let

1 {l1,i2,*..,,r) be any non-empty set of indices such that

Pai (b)21r , 1 and let Ie be the remaining indices. Then

1/r
Il~t(b) ) fl Pai = b . (3.1) •

je * ei a ic ic

From the monotone likelihood ratio property of the binomial

distribution,

F(0;o; a ) < F(; o;i*

where the components of p are given by (3.1). Then

F(;o ;p ) < sur F(xoO;j) - F(x ••) - f*(x ;b)
h(p)-b

4. Sudakov's Hethod

Let

I(rs) I r tr-llt)- Idt
p B(r,s) 0

Then if y is an integer, y<n, we have j

q - I (n-y,y+l) .
J-O IP

For O<y<n, real, define u(n,ya) by a - (n-y,y+1).
u (M. . 0 a

Thus, for integer values of y, u(n,y,c) is a 100(1-a) percent *1
lower confidence limit for p. Sudakov (1973) showed that for

k
n <n <... <n and g(•) - fl (n-X),

i~l

u(nl,yl,ct) < b < u(nl,[y1,01)0 ,
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Swhere Yl " lqo' qo " 1 ((nt-Xo )/n ) .where t o1-1

u(U1,7lm) is called the Lindstrom-Madden method for determining

lover confidence limits for the reliability of series systems

(see Lloyd and Lipov (1962)).

Lipov and Riley (1959) used a different ordering function;

nevertheless they noted that for "small" n,, their tabulated

values provided good agreement with the results using the

Lindstrom-Madden method. For large values of n 1, the tabulated

values that they provided are based on the Lindstrom-Hadden

method. Here we provide a further justification for the

Lindstrom-Madden method by estallishing that it provides conserve-

tive lower confidence limits (i.e. is a lower bound to b defined

in (2.9)) using the ordering furction g(i) employed by Sudakov

and we also obtain an upper bound for b, thus determining the

possible error of the Lindstrom-Madden method.

Sudakov's proof is unnecessarily complicated and contains

some incorrect assertions, which nevertheless do not affect the

validity of the conclusion. In the Appendix we provide a simpler

proof of some auxiliary results needed for the generalization of A

Sudakov's theorem given below.

Theorem 4.1. Let g(;) satisfy the hypothesis of Theorem 3.1.

Then,

b < min u(nviy*],a) , (4.1)
- <i<k

where b is given by (2.11) and yl - Y1 (J 1 *j 29 ''',ji- 1 ) is evaluated

at JC , Lml,2,...,i-1. Note that yl y1 If we also have"
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y -i
I 'J41 ... .... .......... ...k, ,(4 .2)

nj-j - j÷i

then

u(niYl)< b .(4.3)

Proof: (4.1) is immediate from (2.11) upon setting pi-l, fj' and

* solving F(i 0 ;1,..., 1 ,P ', *,.. -,1) = . Recall that na n2 ' a . U

* and

F(; ;i) - I b(nI-.1;P 1 9 n 1 )

k-1

Nov, apply Lemmas Al, A2, and A3 to the innermost sum in (4.4), to gi

[Yk..1] -

I b(nkl-ik_;Pk-l'k-)I (nk-[ykj,[yk]+ 1 ) -

k--k- k ky

k-11

b~n -;-i +1)

0 1k- l1=k- Pk k,-klykl -

I b (nk_-l.k.l;Pk.-l +kl) p (nk-Yk'Yk-l k

Pklk k

Repeated applications of the above establish that

F(; < I (n;-Yl,yl+)) (4.5)
1p•

(4.3) follows immediately from (4.5), completing the proof.

420



i~cmarks. if (4.3) holds and y, is an integer, then b - (nl.yl,9)

It has often been suggested (Lloyd and Lipov (1962).

Winterbottom (1974), Bolshev and Lorinov(1966), Mirnly and

Solov'yev (1964)) that the confidence level should depend only on

.ni the smallest sample size. We nov provide a numerical illus-

tration to show that the bound in (4.1) may be improved by taking

all the a £' into consideration.

Let k-3, =.1, n - (10,12,30), ;- (0,3.0). Then for
3 0

) (n±-xi), f(n 1 ,[yl],a) - .541, f(n 2 ,[y 2 1,a) - .525,

f(n,[y3],a) - .639. The use of (4.3) establishes .500 < b < .525.

Note that if x, nU, for some 1, l<i<k, then g(;) - 0 and

b-0. It seems reasonable to use b-0 as the lower confidence

limit whenever n oi-n for any monotone ordering function satisfy-

ing the conditions of Sc:tion 2.
k

We now show that if g(i) - JI (n±-xi), then (4.2) is satis-
i-i

fied and Theorem 4.1 applies. This result will extend a result

due to Winterbottom (1974), who established this fact for

particular special cases. In addition, we will also show that

(4.2) holds for a number of other ordering functions used in the

literature.

k
Theorem 4.2. Let g(i) - ) (n i-x+ci ), where cL>O and

i-i i1

n i+lai >Li+lni, i-1,2,...,k-1. Then (4.2) is satisfied.

Proof. If

k
(n -y±+1±) +1 (f•+.j ) - c

and

k
(ni-ki+a )(n i+l-Yy+l+cai+ 1  1+(nj+a c
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then we have

(z(n+ (n -k±+oj)(ni+-y 1+1 + 1 )

establishing

__-k1 1 +__ 1 1+1 1( 1+c-k )

i-k I ni+l (ni++ 1+1)(ni-k "

Thus (4.2) holds if
n +(U +a 'kl

i-f (ni+ 1+c (n'-ki)

this last inequality will be true whenever n i+lai > e i n

particular, this is valid when CiMO, i =.,...,k which is

Sudakov's ordering function.

k
Theorem 4.3. If g() - 1 - I x1 /n 1 , then (4.2) is satisfied.

i-i

Proof. If 1 - y/inl - c - I - i+l, then
ni hi+l

n n
i i+l

or
Y1 -kl YI÷

ni-k - ni+1

This type of ordering function has been employed by Pavlov

(1973), for example.

k 2 i
Theorem 4.4. Let g(1) a I aixi+z (aixt) , where z satisfies

i-l
1-4(z ) a a and O(x) is the standard normal distribution function,

> a 2 > > ak, and (n ./n . Then g(R) satisfies

(4.2) if and only if
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a 2 -+k k O (z a +2c- ((y.+k (4.6)j- j+l)'j _> (-+1) j 33 j

Proof: If g(Xo - c + a then defining J atkI c- eSC i
t-i 1-1

ajY 0 + Za(C+&yj) 2 - c (4.7)

and

ak + a y + z (c +a2k+aj+,Y3 + 1 ) - c 2 (4.8)

Equating the left hand sides of (4.7) and (4.8). we obtain (4.6).

If k-2, (4.6) holds for all cases of interest.

If (4.6) holds, then setting

1-a - (r(x)) -1f(x l-O)tx-l e-t dt

0

a straightforward limiting argument shows that

max a f([y]+l,1-a) < b < a1 f(yl+ll-c) . (4.9)
I

This ordering function has been used by Johns (1976) and b in

(4.7) is the value tabulated by Johns for k-2. The validity of

the lower bound does not depend on (4.6). In Table 1 below, the

lower and upper bounds given in (4.9) are tabulated along witb

the values given by Johns for Q-.l. These refer to upper confi-

dence limits for the Poisson parameter combinations a X +a X
1 1 2 2*

Note in particular that three of the values tabulated by

Johns (indicated by asterisks) violate (4.9). Specifically consider

5.24, in which case [yl] - 5, since g (2,5) - 4.78, g (5,0) - 4.72
and g (6,0) - 5.48. Using the Poisson approximation we obtain the

value 9.275 for the upper confidence limit to X for l-.1 and thus

a 1 A1 +a 2 X2 - 5.56. Consequently the sup must exceed 5.56. An
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alternative approach to the one suggested by Johns for k > 3 is to

simply use aIf(y1 +1,l-ct) for b.

Table 1

Comparison of Upper and Lower Bounds
With Values Tabulated by Johns for aw.1

Lover Upper Johns'

a 1  1 2 Bound Bound Tabled Value

.9 7 2 4.79 5.50 5.17

.9 3 0 2.07 2.27 2.16

.75 6 3 6.00 6.65 6.23

.75 12 3 7.90 8.29 7.91

.67 3 3 5.36 5.61 5.33*

.67 15 2 8.71 9.24 8.81

.60 5 2 5.56 5.62 5.24*

.60 7 6 9.24 9.53 9.18*

5. Numerical Examples and Concluding Remarks

Examples 1 and 2 illustrate the method we have described in

this paper.

k
Example 1: Let (n(x) - CL (a -xi - .05, k - 5, i -

i-i
(20,30,40.25,60), i - (2,6,10.8,15). Then the 952 upper confi-

dence limit for the failure probability is contained in (.86,.88).

Example 2: Let H(i) - n(ni-xi), 1 - .05, k - 2, i - (10,10),

S- (3,2). Then the 95% upper confidence limit for the failure

probabiliy is contained in (.70, .73). The value given in Lipow

and Riley (1959) is .70.

Remarks. In this paper we have showed that the Lindstrom-Madden

technique is conservative for ordering functions satisfying (4.2). I
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I Further, If yi Is an integer, then the Lindstrom-Radden method Is

exact. We have also relaxed the conditions needed in Winterbottom

(1974) and provided an alternative to the method of Johus (1976).
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Append iv

The auxlliary results employed in the proof of Theorem 4.1

are provided here.

Lemma Al: IY (n-x.x+l), O<y~l, is a decreasing function of n and

an increasing function of x. I Y(np.nq+l), p+q - 1, O<p<l, is an

increasing function of q.

Proof: The proof is immediate from the observation that the

beta distribution with parameters C and 0 has monotone likelihood

ratio in a and -8 and that if a probability distribution has

monotone likelihood ratio in 6, F6(x) is a decreasing function

of e (Lehmann (1959), p. 68 and p. 74).

Lemma A2: If n > i+l and n < n , then
n i-k i - n 1- i+11

ly (n i-Yiyi-ki1+1) >_I ly(n l+l-Yi+lYl+l +1) .(A.1)

Proof: Rewriting the left and right hand sides of (A.1) as

lyL(ni-ki)(1 i- k i (ni-ki)(n i-ki)+

1n-l (yi+1 )+](A.2)i n il i+ ni+i

Lemma Al applies and the conclusion follows.

Lemma A3: Let yly 2 - y, O<Yigl, i-1,2. Then

Ix]
1 y2(n-x,x+l) > k b(n-k;yl,nI)I (n-x,x-k+l) . (A.3)
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Proof:_________ __

Ix) nl n-k k -r(u-k+l) PY2 n-x-1

k n-k-tk

1 x (l-1 ). (y-t y t-k
-r n+l J, 7 1k n-x-l - d

krx k'rl x-kYl

00

k n-x-i x-k

I - k! r(x-k+l) dt
0

r(n- rx+l) jIY t nx (l-t),d

r(n-x r(x+ i) f A4
km0

Writngl Y - ( -X andyi otin tha O1t- 0y<.ty

(i-)>-y 1, we o Iev tha F(A.4 ) hlsa d thelmaL rvdF =
IO

r~n~l YlY t n- -l (427 ,
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Parameters with Applications to the Interval Estimation of the

Failure Probability of Parallel Systems
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Abstract

The problem of obtaining optimal upper confidence limits for

systems of independent parallel components is treated. Exact

optimal upper confidence limits are obtained for an arbitrary

number of components for specified failure combinations. For

a small number of failures, bounds on the upper confidence limits

are obtained. For an arbitrary number of failures an approxima-

tion is given which is justified numerically and asymptotically.

The results of this paper are compared with the results given by

Buehler (1957) and some numerical examples are presented.
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1. Introduction and Summary

A problem of fundamental interest to practitioners in relia-

bility is the statistical estimation of the reliability of a

system using experimental data collected on subsystems. In this

paper, the subsystem data available consists of a sequence of

Bernoulli trials in which a "one" is recorded if the subsystem

functions and a zero is recorded if the subsystem fails. Thus

for each of the k subsystems composing the system, the data pro-

vided consists of the pair (ni,Yi), i-l,2,...,k, where Yi is
binomially distributed (nipi). We assume that Y1,¥2,...,Yk are

mutually independent random variables.

The magnitude of interest in this problem is easily evidenced

by the extensive literature devoted to it. In this regard, see

the survey paper by Harris (1977) and Section 10.4 of the book by

Mann, Schafer, and Singpurwalla (1974). In addition, the Defense

Advanced Research Projects Agency has recently issued a Handbook[ for the Calculation of Lower Statistical Confidence Bounds on

System Reliability (1980).

Historically, the first significant work on this problem was

produced by Buehler (1957). However, Buehler's method as des-

cribed in that paper is difficult to implement computationally

when 02.

In this paper, we examine the problem of obtaining upper

confidence limits for products of Poisson parameters. This

problem is studied by means of majorization methods and Schur-

convexity, such as described in the book by Marshall and Olkin

(1979). A significant application is the determination of confi-
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dence limits for the reliability of systems of k parallel sub-

systems, a fundamental problem in the statistical analysis of

reliability.

2. Exact Solutions for Products of
Poisson Parameters for Small Failure Combinations

Let X - (XI,X 2 ,...,Xk) be independent Poisson random variables
k

with parameters XlX 2 ,...,k' k > 2, and let h() - X Vi Let

k
g(i) = n (x.+d) , l<d<1.5 , xi=0,1,... (2.1)i-i 2

and denote the ordered points in the range of g (1) by

*DefineJl<J2<...<jm< .... Dfn •

A - lg(x) (i (2.2)

Since xi, i=l,2,...,k, takes on non-negative integral values,

we regard it as desirable to have d in (2.1) only assume non-

integer values. This has the effect of making the partition

defined in (2.2) finer than would be the case if d were an integer.

It is easily verified that

a ýsupilh(x)j i AIinf (i;. a)4 (2.3)an sup h( j cA.i,i<n

i 1

is a (l-a) upper confidence limit for h6t), where

k

e=-i ii~l ^i,''.

The proof is identical with that given in Harris and Soma (1980).

Note that if R is fixed as ni-+Co i l,2,...,k, then
k

a.= lim nI ni where
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= sup f P ._j q[ xi}

1i~l "xiIAi,i<n JinI Pj j
kk

Thus in practice a / n nU may be employed as an approximate ({-a)

upper confidence limit for R q i , qiml-pi. In this sense the

methods of this paper can be used as approximations for estimating

the reliability of parallel systems when independent binomially

distributed data is obtained for each component.

We proceed by showing that g(i) is a Schur-concave function

and consequently

{ 1o { (R•< glio)}

is a Schur-convex set (see Marshall and Olkin (1974), pp. 1189-90

and Nevius, Proschan and Sethuraman (1977), p. 264). The Schur-

concavity of g(i) follows immediately by noting that

( _x r(gR qi

Define F(i 0;) by

S-x 0 f(Rc~) =I( (2.5)

0and let

U(i 0oa) m sup F(k ;X%) , 0<a<l . (2.6)

0 h(X)Ma

Since the Poisson distribution has a monotone likelihood ratio,

U(ko ;a) is a strictly decreasing function of a for fixed x .

Hence for every c, 0<c<l, there is a unique a(c) such that

u (kooa(c)) - c . (2.7)

Consequently, we also have that an (see (2.3)) is the solution in
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a of

u(i ;a) = o . (2.8)

(2.8) is established exactly as in Harris and Soms (1980).

The methodology to be employed is as follows. If F(i;)) is

a Schur-concave function of R -ln Ail i-l,2,...,k, then it

follows that u(i ;a) = F(xo;al/k 1), where 1 = a1,1,...n,),d

then the solution in a of u( 0;a) - a is an optimal upper confi-
k0

dence limit for nl Xi. This will entail verifying (for fixed 9 )
i-i0

that

(R1-RI) RF(x -) 2 01 0 (2.9)

1 __ (29

(see Marshall and Olkin (1974), p. 1190). Accordingly we have the

following theorem.

k
Theorem 2.1: Let g(l) = H (xi+d), 1<d<1.5, k>3. Define - as

i=l1

the j-vector all of whose components are zeros. Then let

(1) - 0 k' x(2) - (l'0kl). x(3) ( 42 ' 0 k-l)' ( =

x ( 3,6k-l x (6) - k1 x = ( 2 , 1 , 0 k-2 and

x(8) - (5, 0 k The set Ai defined by (2.2) is the point xUi)

and the different permutations of its components, i=-,2,....,8.

Further, for J-1,2,...,7, F(x is Schur-concave in Ri,

i-1,2, .. • k.

Proof: In the sense of the ordering given by (2.2), obviously

x11) < (2) X1 < x ' x16) < Xx1). Triviallyd(2+d) < (1+d)2

and hence (2 +d)dkl - g(x(3)) (l+d) 2dk- g(x(4)). Similarly,

since 1<d<1.5, (1+d)2 < d(ý+d) and hence t(1 4) c g(x15)). In

(6) (7) (7) (8) (8)
the same way g(x() < g(x ), g(x1) g(x N ), g(x() 9 g(l,l,l,0h 3 )

and g(x < g(2, 2 , 0 k_2), establishing the first part of the conclusion.
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in order to establish Schur-concavity, wc must verify (2.9).

Thus consider

k A xJ).F((): . F i / i(j)l (2.10)
xCA .ict i-i

* where X " -Ri Define

G(x i (I-""a R 1 aR 2 / e (2.•11)

Letting R - (RI,...oRk), we obtain

-(l111) - (eR 1  -eR),

-R -R k R.4
G( 12;) - (e 1 e )( 2 e- i)

R )R k _Re k -2Ri

1 u3 imi

-R -R k I2, k -R -R

1I

G(lxl3;R) - (e- e 22)(i + J i)
e2R

U 5' -R -K k 1 -R2-R2

e- -e 2 e2 + e 2

k -R-R k - 3R i
I a + 1 31i<j, (i,j)0( 2 i( (1 ,

-R 2 _R 1  -R 1 -R 2  k -R -RG(;1)R) -(e" -e ) +•

+ 3 31Rji3 T1 _________+i f:

and
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-- 2R -I --R -R 2

S) (e .1 eR2 1 2 + e 1 2+eI G3 3 3<•!

, k -3R i k "4Ri "2R iR •

I e + ee +.
i i,3 3i-i U ii'j,(i,J) (1,2)or(2,) 21

_R 1 R 2-R 1 -_" !• -1 -R2(e-R eR 2

11Now RI>R2 implies e c e and thus (R1 -R2 ) and e - )

j have opposite signs. Hence it follows that F(x(i);), i=1,2,3,

4,5,7 is Schur-concave in Ri. The verification that F(R(6)0) is
-2Schur-concave may be accomplished by letting k=2, e -ce

c>O, and examining the discriminant.

To show that (2.9) need not be positive for all xo, consider

km 2 and x = (7,0). Then

--R e 2  e-6R1  e-6R2

G(Xo0 R) (e e 61

-4RI-R 2  - 3RI -2R2+e -2RI 3R2÷e'l- 4R2
5!

-3R 1 -R 2  -2R 1 -2R 2 -R1-3R2 e 2R1-R2+e-R1-2R2• +e +eC + ...

"41 3-R1 -R2
and this is Schur-convex near e - e - 4.

Buehler provided an extensive discussion of this problem for

the ordering function determined by the product of the upper

confidence limits for the individual components. In particular,

he provided some numerical tabulations for k-2. Asymptotically

Buehler's ordering function is given by

k 1/2
gB(x) n Nl (+ZaIX±i-i

where a' - l-(l-a)lk , z satisfies O(za) - 1-a and tCx) is

the standard normal cumulative distribution function. It is easy

to see that gB(R) is Schur-concave (see, e.g., Marshall and Olkmn

(1974), p. 1191). 437
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3. Bounds on Confidence Limits

In this section we employ majorization techniques described

in Proschan and Sethuraman (1977) and Nevius, Proschan and

Sethuraman (1977) to obtain bounds for an. Throughout this sec-

tion we assume only that the ordering function g(R) is strictly

increasing in each component and Schur-concave and thus the set

Bo will be Schur-convex (see the discussion immediately preced-

ing (2.5)).

In order to proceed, we need the preliminary results estab-

lished below.
Theorem 3.1: Let c and a be given with c>kal/k and consider the

set A(a,c) of vectors X = (XIX 2 A...,Ak), Xi!0, such that

k k
1i X- =a and Xi - c (3.1)i-l i-i

LetS• - max !i. Then there is a unique X* E A(a,c) of

the form Xi M Hit ldi<J, i W mj, j+l4id k, Mj mj, S - J .

Proof: The condition c>kal/k is a consequence of the arithmetic-

geometric mean inequality and insures that A(a,c) is non-trivial

for k>3. If k-2, there is only one solution of (3.1) with X1>X2,

and hence the Theorem is trivially true. Consequently, suppose

k>3. Then for fixed J, (3.1) requires that any solution of the

required type satisfy

jM + (k-J)mj C c , m k-- a

and hence setting m - (c-JM i)/(k-J), we consider
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f.(M) M, I [(c-jti)(k-j) ])k-j Oj<k-1, OM<c/j (3.2)
:3 - "

Note that f (0) = f (c/j) = 0, and

f-,M) C-M-) ( )( (3.3)

Thus, f (M) is increasing for O<M<c/k and decreasing otherwise,
k

further f (c/k) - (c/k) >a. Hence there is ,exactly one solution

Mj of f (M)-a with M.>c/k, and therefore M >Mj.

Now assume that for some j, l_<jik-l, the vector
X (XVI,2,...,Ak) with S X. is not of the form

(M ,...,Mj, m J,...,m ) Then let X j - S/j and X2j - (C-Sj)/(k-j).

%-j k-i

Define X ! (X by = Xj l<i<j,

j+l<i<k. Since the geometric mean of a set of positive numbers

whose sum is fixed is a maximum when they are all equal, we have

iXi >a. Now X is of the required form, however, from (3.2) and
imi I k -0

(3.3), H Xji > a implies that there is another solution of the
il-

required form with Xi > Sj/j, l<i<j, contradicting the maximality

of Sj.

From (2.5) and (2.6), we can write

U(R ;a) - suP jB~o) ,O sup sup Pi(BRo) . (3.4)
0k 0 c kc k o

Ii-a X• lcf-, 1 -a
i- 1-1 1 -1"

We state now the main result of this section, using Theorem 3.1.

Theorem 3.21 Let v 1 - MI, Vi - iM 1-(i-l)M i 1 , 2<i<k-l,S~k-l

v -- vi, where Mj is specified by Theorem 3.1. Then

i-i
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u(ic0;a) < sup PV(Bk (3.5)
C 0

kiProof: Since v - Si <Jik-1, v c, • majorizes every

k k J "

X with I Cl Xi - a (Theorem 3.1). Then (3.5) follows,

i-1

since if A majorizes X2, then for any Schur-convex set A,

(P•(A) ! Pj (A) (Proschan and Sethuraman (1977) and Nevius,
1 2

Proschan and Sethuraman (1971), p. 264 and pp. 267-9).

The vector v may be interpreted as the best vpctor that major-
k k

izes all vectors A such that X i = c and nl X. a. Morei-lii a

specifically, there is no vector , • such that i majorizes ;; and

-i majorizes all X satisfying the two conditions given above.

The following is a suggested method for employing Theorem 3.2.

Find ad such that

CL = F(k ;adI/k 1)

Next calculate the smallest a, say am, such that sup P.(Bo) <"

If am - ad' this is the exact solution. Otherwise a < am and

sup P.(EN ) < a (here a -am) and the solution an satisfies

ad anlam. The vector ' may be calculated by any of a variety of

numerical techniques. In the numerical examples presented here,

interval bisection was employed.

Example 1: Let k - 5, a - 25, c - 15. Then the 4 vectors i

3 and 4 of Theorem 3.1 are

X 1(9.9660, 1.2585, 1.2585, 1.2585, 1.2585)

X2 ( (6.2004, 6.2004, .8664, .8664, .8664)

X3 = (4.6696, 4.6696, 4.6696, .4955, .4955)

and X4 a (3.7172, 3.7172, 3.7172, 3.7172, .1309)
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from which vis determined to be

*f V. = (9.9660, 2.4349, 1.6079, .8601, .1309)

Note that in the above example V._v•...>Vk. This in fact

is always true, as the following .theorem establishes.

Theorem 3.3: For 'r defined by Theorem 3.2, we have v>v .. !>v

Proof: It follows immediately that vl>V2 , since MI>M2 . Consider

therefore vj, J!2. vj~vj I, j= 2,3,...,k-1 holds if and only if

SjMj-lJ-IIMj_> (j+IIMj.+I-JMj i

or

Fi~j Mj Z> ((j+I)Mj+I,+(j-l)Mj_I)/2,

where M k -c/k (satisfying the condition Sk u c = kMk of Theorem

3.1).

Let XA = (lJ-1)Xj_1 + O jj+l, j=2, 3 ,...,k-l, where

&= (i/2)+(l/(2j)) and

X: i = (X jl#Xj2,...,Xjk)

I and

Xii = Mi ,l<i<j, Xji = m , j+l<i<k

It follows that

k
Si-I Aji -

k
since in xi is a concave function of xI,...,xk' Now let•i-l f P, k

X Bit 1 X AJOI/iD im1,2I,...IjI X iia1fi+ j (-)

'-J+l,...,k. Then

j jn A •Bi i H X1 Ail • j-1,2,....,k-I

ul i-i Aj,



Thus, using the properties of M. in Theorem 3.1,

SjMj 0 (j-)[(1-Cj)M_+M + (1-)m + a M+1
*• j J) 1 c

yielding

jMj £ ((i+1)Mj+I+(J-I)M.j_.)/2 + (l-tj)mj_1

which establishes the theorem.
To illustrate the techniques of this paper, we compare numer-

ical values obtained by the above method with those given in the

examples from Mann, Schafer and Singpurwalla (1974, p. 505). From

now on we assume d = 1.1.

Example 2: For x = (1,2,1) we obtain ad - a - 20.56 for a " .10.o n

In Mann, Schafer and Singpurwalla, an AO non-randomized confidence

bound of 20.7 is obtained.

Example 3: Let o = (2,3,5), a = .10. Then we obtain - 135.46.

A summary of computer calculations which establishes 135.46 a n<

142.46 is given below in a.ble 1. With the exception of the

likelihood-ratio value of 133 and the AO non-randomized confidence

bound of 129, all the other confidence bounds given in Mann,

Schafer and Siagpurwalla exceed the upper bound of 142.46. For

k-3 it is possible to do a direct computer tabulation of u(iO;a).

This gives an - 135.46, the diagonal value. (See Table 1 on the

following page.)

The two examples below are for four and five component systems

for which there are no comparable numerical examples available.

Example 4: Let o - (2,2,2,2) and a -'.10. Then ad - an - 150.63.
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1. Summary of Calculations Used to

Obtain the Upper Bound for a. in Example 3

a , sup P..(B.o)-
c 0-

135.46 13.0680 4.7283 1.7108 .1101

136.46 13.0867 4.7409 1.7173 .1086

137.46 13.1053 4.7532 1.7240 .1071

138.46 13.1239 4.7656 1.7305 .1057

139.46 13.1423 4.7780 1.7370 .1042

140.46 13.1607 4.7902 1.7435 .1028

141.46 13.1789 4.8024 1.7500 .1014

142.46 13.3299 4.8057 1.7325 .9999
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Example 5: Let xo (2,2,2,2,2) and u = .10. Then ad - 429.69.

A summary of the computer calculations which establish 429.69 <

S435.69 is provided in Table 2. (See the following page for this

table.)

AS ad l/k increases, the difference between ad and an becomes wider

Thus the techniques of Section 3 are more useful for small x01or equiva-
1/k

lently, small adl. For example, for i 0 - (5,5,5), ad a 387.18,

and it is not practical to compute am because it is much bigger

than ad& However, direct tabulation of U(o 0 ;a) reveals once more
that ad = U(ico;a). A justification of why ad = U(•o;a) for large

adl/k is given in the Appendix. This, together with the results

of Section 2, suggests very strongly that for all practical
purposes ad = an.

Remarks: Note that Tables 1 and 2 are virtually linear in their

behavior in the neighborhood of the solution. This suggests that

solutions are obtainable by interpolation and then one should

subject them to verification.

The calculations described above utilized two short FORTRAN

programs for 2-10 components. Listings are obtainable from the

authors.

4. Comparisons with Buehler's Tables

In order to provide an illustration of the performance of
k

g(X) 0 fI (xi+d), l<d<l.5, when compared with the tables given
i-l

by Buehler (1957), we chose d-l.l, k-2. For k-2, the values of

an and ad coincided for both the ordering bAsed on g(k) and

Buehler's ordering and further were for all practical purposes
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2. Summary of Calculations Used to

Obtairn the Upper Bound for a in Example 5
ln

a sup P- (B- )

429.69 .1016

430.69 .1013

431.69 .1010

432.69 .1007

433.69 .1004

434.69 .1001

435.69 .0998
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I equal for the two different orderings.

In Table 3 we give Buehler's upper confidence limit, Buehler's

diagonal value and the exact upper confidence limit and diagonal
value corresponding to g, denoting them by anB, adB# ang and adg,

respectively. These values are provided for all failure combina-

tions from (0,0) to (5,5) for a=.l.

See next page for Table 3

An examination of Table 3 shows that differences between the

four alternatives presented are small for the specific example

(k-2, a=.l).

5. Concluding Remarks

In this paper a procedure for obtaining bounds on an optimal

upper confidence limit for the failure probability of a parallel

system is given. The procedure employs the theory of major-

ization and is valid for an arbitrary number of components and

gives the exact answer or narrow bounds when the observed number

of failures i_ small for each component. In addition, numerical

and asymptotic justification is given for using ad as an

approximation to an. Tables of ad are in preparation for moderate

numbers of failures for 3, 4 and 5 components and will be avail-

able in the near future.
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3. Comparison of EROCt and, Diaqonal Buehler's Values,

-and adB, Respectively, with the Exact and Diagon~l
aSnB a B gRespectively, Corresponding to (60

a~ad aa

5 5 60.7 60.70 60.70 60.70

5 4 51.8 51.89 51.89 51.89

5 3 41.2 41.21 41.22 41.21

5 2 31.9 31.91 31.91 31.90

5 1 23.3 23.34 23.34 23.34

5 0 12.3 12.32 12.32 12.32

4 4 44.3 44.40 44.40 44.40

4 3 35.7 35.73 35.74 35.73

4 2 27.2 27.23 27.23 27.23

4 1 18.8 18.77 18.77 18.76

4 0 9.05 9.05 9.05 9.05

3 3 28.9 28.89 28.89 28.89

3 2 22.0 22.04 22.04 22.03

3 1 15.1 15.08 15.08 15.08

3 0 8.24 8.24 8.24 8.24

2 2 16.8 16.80 16.80 16.79

2 1 11.8 11.85 11.85 11.85

2 0 5.59 5.59 5.59 5.59

1 1 7.09 7.08 7.08 7.08

1 0 3.86 3.78 3.78 3.78

0 0 1.33 1.33 1.33 1.33
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Appendix

Theorem Al: Let Xli, . < i k, be independent identically

distributed normal random variables with means A and variances

Let X2 , 1 1 i < k, be independent normally distributed random

variables with means T and variances Ti' where T - A + O(X')I

kk
c < l,as X -, and R T. a X Let B be given, 0 < 0 < 1,

ijnl klet a be a specified positive real number, let Z T CX1 + a),

Z2 " • (X2 j + a) and let d(X) satisfy

PIZ, d(o)] - 8. (A.1)

Then as X ,

O[(Ln XA1  I C 5s.

S- PIZ2 < d([)] < (A.2)

Proof: Throughout, let * and 0 denote the density and

distribution function of the standard normal. Clearly,

P[Z, < d(X)] - PIZ2 < d(%)] f f f (f 1 x) - f 2(x))dx,

(A.3)
k

Lx: IT (x + a) < d W

where x - (xlx 2 ,...,xk), f1  is the probability density function

of XllXl 2 ,...,Xlk and f 2  is that of X2lX22,...,X 2 k. Now
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PIX > j a X /2 X+a k(.4
nd j _•-•, 3 - l,2,...,k] _i - (Ma) X-172 k (A.4)

P _-a, j - 1,2,...,k) > TI ( (A.5)

Ionsequently, for X sufficiently large, there exists a constant

> 0 such that

SPI ~ -a, 3 - l,2, .. ,k] 1 1- e" I - 12 1(,E)

,Then, for i - 1,2, -

- zP[i < d(X)l - PZi <_ d(X),Xij > -a, j - 1,2,...,k]

k
+ Pzi< d(X), U (Xi < -a)),

and therefore

-- d() - P[Zi d(X),Xij -a, j = 1,2,...,k) < e-'' (A.7)

,Next, we calculate

: P[Z< 'd() Xlj _> -a, j - 1,2,...,k) - P[iz d(X) 1 j _ -a, J -

'Now

; :P(Z - d()Xlj > -a, j 1 l,2,...,klX - xj, 3 - 2,3,...,k)
1 'i j 'j

-a d(X) (A.8)
" P~ - *(-'b•)

[ I; (x)+ a)

J!(xJ+a) )'
. , - a - )//2 )44
3-2I[

I.

'I

- •L *



Therefore

P[z 1 < d(X),Xlj > -a, j 1,2,...,k) (A.9)

- f J "J *(b )gl(X2 ,X3 ,---,Xk)dx 2 dx 3"'dxk
-a -a -a X

where ,X,.) is the probability density function of

theere

X1 2 ,X1 3 ,...,Xlk* From (A.6), we have that

f' f • " O€(b-) gl (x2"x3"''''Xk )dx2 dX3"''dx k

(A.10)

- f ...' t(b-)gl(x2 'x3I" "."uXk)dX2 dx 3 " " dxk I e

-a -a -a

Hence we will estimate the first expression on the left hand side of

(A.10). Similarly, for Z2 we will consider

f 17 d(X - a - T /T 1/2 g(x 2 Ix3 I.. )dx dx3 . dx
"k (12.2' 

3,..xk 2 3""#)

j1 (X (A.ll)

where 92 ,(x 3,.x3 .. ,Xk is the probability density function of

X2 2 ,X 2 3 ,...,X2 k. In the first integral in (A.10), let

(y,- X)/X = ui and in (A.11) let (yi - 1i) /2i U i

i m 2,3,...,k, obtaining
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11(x .aJI f " ' d¢) __ a - )/ci/2) (X€2,C, ,x)dx 2dX<... dxk

1=2 j+a
f " f " f k d(A) a T - l/ 92 (x[ 2F3 ip dx2d * *d

-M-M -" In (•,1x_.•aj=2 J(A.13)

-M 14 1/ + a)2

Sf jk..
-34 -M ()1/ +k+a

-Jj2

TI (,r "x +1r +a) rit

2 2
+ RI,

where 34 , (2 in X)I/2 and RM < 4 (k-l)e M /2 OX--- (2j) I/M

Using d() = - kd0)0X k-/2 kd(X) = 011)d° d
_k d a 1/2 (X/2k d- 1/2 + -1

3R2 (x 1 / 2 xj+,+a) 
j-2

1/2 _ax 1-/2

Since Ixill M, we have

-11/2 )-I- -- /2 2 -1 1.5 1.5

(1 + XjX +aX ) -1-x A- +(-a+x )X +0((Ln ) 5 1 )
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Thus

kc -1/ -11 -/21/2
1/2 kd(X)) + (1 + X"1/2 + a)- - l/-

k k -1/2 +k 2 -1/2 (A.14)
_.x-K (CX)_kaX'/+kd(X) ( xi)) +. xi.I)- x-"im d d i" 22 --

+ ( xx )x1/2 o((Ln X)
2<i~j •=

k k +0().C-1
Similarly, using Ti = / r/) 1 + OT -),

j=2

CC/X)1/2 1 + o(c-l), j u 1,2,....,k, Ix.i < M, we have

I d(X) a T/•1/2

ik ( 1 / 2 x.+Tj+a) 

"-
jd2 (= j j r11  kT i/2a/21 -/

(t (X/l)l /2 Ic2kdX) (1+x.¶7j + ¶l)-1 / -at[/

11 Ld~Ij=2 )

(A. 15)

k - k - 1/2d+( k k 2 X-1/2I- xi-k (X)-kaX- /+k d(W I i2x i )X (ij2i

i=2 Idi=22 i-2i

+ ( xix))X -1/2 + O(X C-))+O((tn X)l1.5X-)1

2<_i< "

Combining (A.14) and (A.15) with (A.7), (A.9), (A.10) and (A.11)

establishes the theorem.

For c < standard weak convergence arguments show that

zim(O - PIZ2 5 d(X)]) = 0.

In this case Theorem Al provides additional information by specifying

the rate of convergence.
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By standardizing the first expression in (A.13) and applying

Sthe dominated convergence theorem the following result can be

obtained.

Theorem A2: Let Xli1 <_ i < k, be independent identically

: distributed normal random variables with means X and variances X.

Let X21, 1 < i < k, be independent normally distributed random

variables with means T and variances Ti. where Ti + 001 O )0

c < 1 and let a, Z and d(X) *be specified as in Theorem Al.

Then

Lim(O - P[Z2 < d(X)) - 0.

I2
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RE LIA IUTY BASED SAFETY FACTORS
t FOR CONCRETE STRUCTURES SLIDING STABILITY

Paul F. Mlakar
Structures Laboratory

U. S. Army Engineer Waterways Experiment Station
Vicksburg, HE

SYNOPSIS. A safety factor criteria for sliding stability, which explic-

itly -ruantifies load and resistance uncertainties, is developed through the 4
probabilistic analysis of a simplified illustrative problem. Certain points

of this analytical development are noted to warrant further study.

I. INTRODUCTION. A concrete gravity structure, such as a dam, will

fail by sliding along a critical foundation surfuce when the resultant effect

of externally applied forces exceeds the total resistance developed along this

surface. (US Army Corps of Engineers, 1958). (US Bureau of Reclamation,

1976). A practical means of assuring the safety of such structures is to

require that the ratio of available resistance to the effect of the applied

load, termed the factor of safety, exceeds a minimum value greater than unity.

Heretofore, this value has been established somewhat subjectively on the basis

of engineering judgement. The implicit purpose of this factor is to account

for uncertain definition of the loading and resistance. Accordingly, proba-

bility theory could be used to supplement engineering judgement in objectively

establishing a minimum safety factor. Such a procedure is detailed herein

for a simplified example problem to facilitate a discuission at this clinical

session. This development will indicate items requiring further research

before a reliability based sliding safety factor can be practically

implemented.

II. MECHANISM OF SLIDING FAILURE. Figure 1 is a free body diagram of

a concrete gravity dam croas section under its normal operating condition.
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In this diagram, H represents the resultant of the hydrostatic pressure

exerted on the upstream face of the cross section by the reservoir when

filled to the spillway elevation and W is the total weight of the dam.

For illustrative purposes only, the critical foundation surface is shown to be

oriented horizontally and the total shearing and normal forces acting on this

plane are designated by Q and N respectively. If this structure is stable

against a sliding failure, the condi i of translational equilibrium require

that

Q=H (1)

and

N W (2)

Now, the maximum total shearing resistance R which can be developed

along the foundation surface is approximated by (Lambe and Whitman, 1969)

R - C + N-tano (3)

In this expression, C represents the total cohesive resistance which can be

developed ir the absence of any normal force and * is termed the friction

angle of the foundation material. Figure 2 indicates that the shearing re-

sistance available from equation (3) to counteract externally applied loads

is a function of the foundation material properties, C and * , and the

normal force N induced by these loads through equation (2).

The safety factor is usually taken to be ratio of available resistance

to load effect or in this illustration

F - - (4)
Q

Accordingly, the qtructure Is stzble against sliding for values of F not

less than unity. As neither Q nor R can be known with certainty, prudent

practice has traditlc -"ily required that the calculated F exceed unity by a

comforrable margin. The magnivulc if this margin has traditionally been
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determined through a professional consideration of the uncertainty in load and

resistance definition as well as the consequences of structural instability in

specific situations.

III. PROBABILISTIC ANALYSIS. Probability theory provides a means of

rationally quantifying the various uncertainties associated with sliding

stability as follows. First, for computational convenience in this illustra-

tive problem, assume that the load is described by the value of a lognormal

random variable having a median mQ and a coefficient of variation VQ

Similarly, model the resistance by the value of a lognormally distributed

random variable with median mR and coefficient of variation VR . If load

and resistance are further presumed to be independent of one another, !1 then

follows that the safety factor is lognormally distributed with median

mF li (5)

and coefficient of variation V F satisfying

2 2 2()
ln(V +l) ln(Ve+l) + h1(VQ+l) (6)

A further consequence of these conditions is that the reliability-against

sliding failure is

r = F (7) A !

where 0(.) is the cumulative distribution function of the standard unit

normal variate. Theoretically, one could use this distribution to compute

the probability of sliding instability (Prendergast, 1979). However, practical

oafficulties exist with this concept because there is insufficient justifica-

tion for the assumed lognormal distribution of load and resistance, becuuse

an explicit criteria for an acceptable failure probability is difficult to
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establish and because many practicing civil engineers are unschooled in

probabilistic calculations.

IV. RELIABILITY BASED SAFETY FACTOR. Similar difficulties in the

structural design of buildings have recently been circumvented by establishing

safety factors based on probabilistic computations which can then be used in

the traditional deterministic manner (Ellingwood et al, 1980). A corresponding

approach in the case of sliding stability would proceed by estimating the level

of reliability implied by current design practice. A recent examination

(Baecher et al, 1980) of modern United States dams of all types disclosed a

failure rate from all failure mechanisms of 2 x 10-4 per dam-year of which

approximately 10% were attributed to slides. A preliminary estimate for the

sliding reliability implied by current design practice for the normal operat-

ing condition might then be r - I - 0.10 x 2 x 10-4 , 0.99998. Equations (5)

and (7) and the tabled values of the normal distribution then imply that an

appropriate median safety factor is given by

( ln(V +1) + ln(VQ +) (8)

In Figure 3, it is seen that this criteria desirably requires a higher safety

factor as the uncertainty about load or resistance increases. Surely, the

appropriateness of the lognormal model assumed in the foregoing warrants

further investigation. Data in addition to (Baecher et al, 1980) should also

be examined to refine the reliability level implicit in equation (8) before

implementing this procedure. The result of these studies would be a relation

among mF , VR and VQ that more realistically described the sliding stability

of a concrete structure.

V. APPLICATION. The above criteria would be applied in the following

step-by-s&Ep procedure:
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1. Estimate the load effect's cuefficient of variation V . This

estimate should encompass not only the uncertainty of the variables

from which the load is computed but also the accuracy of the analyti-

cal model used in the computation.

2. Similarly estimate VR considering not only the sample variabi-

lity of test data but also any differences between measured and

in situ values as well as the accuracy of the resistance model

adopted through equation (3).

3. Enter Figure 3 to obtain the median safety factor required con-

sistent with the load and resistance uncertainties determined in

steps 1 and 2.

4. If a structure's safety factor, computed from median values, equals

or exceeds the required value, the design is acceptable as in

traditional deterministic practice.

5. If a structure's computed median safety factor is less than the

required value, the design has not been shown to be acceptable.

It can now be modified to an acceptable level as in traditional

practice. Alternately, further design studies can be conducted

in hope of reducing VQ or VR and thereby requiring a lower

1F which the original design may satisfy.

Notice that this procedure allows the engineer to quantify his uncertainty

about load and resistance rather than relying on only nominal deterministic

values for these variables. However, some guidance on this quantification

must be developed for practical use.

For example, stippose that the normal operating load on a dam is charac-

terized by m Q 300 kip and a relatively small VQ 0.05 since this load

459



effect results from a well understood hydrostatic pressure. From the dam's

weight and preliminary estimates of foundation material properties the resis-

tance is thought to be described by m R - 550 kip and VR a 0.50 . The
: 550

corresponding mF m -8 1.8 which is less than the value of 2.0 required in

Figure 3 to be consistent with the VR - 0.50 and V = 0.05.R Q
Now suppose further foundation investigations are performed to qualify

this design which revise the estimated resistance parameters to be mR -
500

500 kip and VR = 0.40 . The updated median safety factor becomes m 5 0 -

1.7 which exceeds the value of 1.6 now required in Figure 3 to be consistent

with the improved estimate of VR *

VI. CONCLUSION. A reliability based safety factor for a simplified

example of sliding stability has been developed which quantifies the engineer's

uncertain knowledge of load and resistance. Simplifying assumptions in both

the deterministic and probabilistic analyses leading to this criteria should

be critically examined. Statistical data are also needed to refine the calibra-

tion of this procedure with current deterministic practice.

VII. ACKNOWLEDGEMENT. This development was supported by the Office of

the Chief of Engineers.
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A UNIFIED AND UNBIASED ANALYSIS
FOR

DECISION MAKING IN PATERNITY DISPUTES

Paul H. Thrasher
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ABSTRACT. The analysis of genetic testing in paternity disputes uses
several-p--roBilities. The commonly used probabilities, first developed in
Europe, are discussed. Two additional probabilities, based on (1) the
possible fathers of the child when maternity is assumed and (2) the possible
children of the mother and putative father, are introduced to measure the
putative father's and mother's risks. A sample calculation is made to
clarify the different probabilities. The results are organized in an analysis
table to present an unbiased and comprehensive summary. A hypothesis test is
proposed for decision making. This hypothesis test is designed for the United
States legal system as opposed to the European system. A brief discussion of
the attitudes and interactions of analysts and courts is included.

I. INTRODUCTION. Statisticians and people in other professions who
deal wlth probabilities are often asked to interpret data from experiments
whose design cannot be controlled. When this data can be interpreted with
several techniques, great care must be taken to present an unbiased and
complete analysis. When the analysis is to be used by people not trained in
statistics, a logical and uncomplicated presentation is extremely important.

The topic of paternity testing is a challenge to statisticians, judges,

and juries. It has great social and economic impact for the mother, child,
putative father, and all tax payers who contribute to state funded child
support. The intense personal involvement creates biased viewpoints. The
antagonistic legal system, as it is practiced in the United States, makes the
presentation of an unbiased analysis difficult. However, the people who must
decide paternity disputes need all the information they can obtain in an
unbiased and unconfusing manner.

Courts in the United States have been hesitant to assign much weight to
statistical analyses which have been developed and used in Europe. In the
United States, there may well be two primary reasons that the use of
probabilities in paternity disputes has been unpopular and infrequent. First,
the United States legal system starts with the assumpution that the putative
father is not the true father; but the European system begins with the opposite
hypothesis.' Second, most proposed analyses have been so incomplete and
fragmented that opposing lawyers could easily stress biased viewpoints and
create confusion.,
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II. E•€.SURBE1UrS. There are several genetic polymorphisms which yield
infonmation about paternity. The first measurements were made on blood groups
such as the ABO system. Now there are 20 to 25 genetic marker systems
including blood groups, protein groups, enzyme groups, and HLA types.'

All available systems• fit into the model of the hypothetical systems of
Appendices A, B, and C. Any tested person is classified according to phenotype.
This phenotype includes one or more genotypes. Each genotype contains two genes
which may be identical. The laboratory testing on any person cannot measure the
genotype unless the measured phenotype has only one genotype. The phenotype,
gene, and genotype frequencies are the fractions of the relevant population that
have those phenotypes, genes, and genotypes. These three types of frequencies
each naturally sum to unity. The numerical values are independent of sex but
depend on the racial subgroup and geographical area of the population.' Since
there are three adults that must be considered in a paternity dispute, three
populations must be characterized by gene frequencies. Although these three
may be identical, this paper will consider the general case; for the first
hypothetical genetic system, Appendix A describes the random man and Appendix B
describes the populations from which the mother and putative father are taken.
Appendix C describes all three populations for the second hypothetical genetic
system. Although both hypothetical systems have obviously been given exact
frequencies for all three populations, actual measurement of gene frequencies
uses sampling and the desired gene frequencies do not come from an exact
algebraic solution. One approach is to use the least squares technique as
suggested in Appendix A.

In addition to gene frequencies describing the populations of the random
man, mother, and putative father, the exact phenotypes of the mother, child,
and putative father are measured. It is assumed that no errors are made by
the medical laboratory which types the mother, child, and putative father.

The child's and mother's genetic systems are further measured by their
relationship. This restriction of the laboratory measured types occurs
because the child gets one gene of each genotype from the mother and one from
the true father. For example, if the mother is phenotype R and the child is
phenotype Q, the mother must be genotype ab because she had to give gene a
to the child. Also, if the mother is phenotype Q and the child is phenotype R,
the child must be genotype ab because the mother could not have given gene b
to the child. Occasionally both the mother's and child's genotypes are
restricted; for example, an R mother and S child must be ab and ac, respectively.
This assumption of true maternity between the mother and child is normally valid
when the mother is attempting to establish paternity of the putative father;
and it will be made for all calculations in this paper. However, it must be
considered very suspect in cases such as a man and wife attempting to establishpaternity of children for purposes of immigration.

11. EXCLUSIONS. One possible result of genetic testing is to exclude
the putative fiather from any possibility of paternity.3 An example of an
unquestionable exclusion in the hypothetical genetic system of Appendix C occurs
when the child is phenotype JK but the mother and putative father are both
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phenotype JJ; the assumption of maternity requires that the child's J gene
was transmitted by the mother but the child also has a K gene which the
putative father does not possess and could not transmit. Medical authorities
are justly concerned with the possibility of false exclusions.$ A few examples
are given here just to underscore the fact that any statistical analysis relies
on a medical foundation. An apparent exclusion is obtained if the mother and
child are JJ while the putative father is KK in the hypothetical genetic system
of Appendix C. This exclusion could be false, however, if (1) a rare L gene
existed in the system, (2) the antiserum necessary to detect the L gene is
unavailable, and (3) the child is really JL and the putative father is really
KL. A second type of false exclusion occurs if the child is not old enough
for the genetic system to be fully developed. An example using the hypothetical
system of Appendix A would occur if both the mother and putative father were
U a bc and the child tested as V = bd but would become U a bc when his or her
genetic system fully developed. For this paper, the genetic systems will be
assumed to be completely developed, known, and tested.

If no exclusion is obtained, two probabilities may be calculated as a
rough indication of paternity.' These are:

Z' E P(a random man could be the father) and

Z _ P(a random man tests as if he could be thc father).

An alternate way of viewing the same information is to consider:

Px= P(a random man could not be the father) and
ex

Pex = P(a random man would be excluded by testing).

Appendix D shows an example of these calculations based on gene frequencies of
Appendices A and C. Z' will always be less than or equal to Z. Neither Z' or
Z depend on the result of putative father's genetic test although the calculation
loses its significance if the putative father is excluded. For both Z' and Z,
the only gene frequencies considered are those of a random man; the information
about the mother's or putative father's racial and/or geographic backgrounds are
not used. The combination of Z' or Z values from separate sys tems assumes that
these systems are independent.

The discrimination of genetic systems may be measured by average values
of the probabilities of excluding falsely accused putative fathers. This
calculation, which is illustrated in Appendix E, utilizes the probabilities
of occurrence of random mother-child combinations, the gene frequencies of the
mother's population, and the gene frequencies of a random man.

IV. CONDITIONAL PROBABILITIES. The existence of the putative father's
phenotype may be used in the calculation of conditional probabilities which give
a crude likelihood of paternity.' These are defined as:
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Y' - P(the putative father's phenotype occurs in random men) and

Y = P(the putative father's phenotype occurs in possible fathers
having the putative father's gene frequencies).

Appendix F shows this calculation for the case started in Appendix D using the
genetic systems of Aopendices A, B, and C.

Conditional probabilities containing more information may be calculated
on the basis of gene transmission.' These probabilities, which also use the
putative father's phenotype and the gene frequencies of his population, are
defined as:

Y = P(the necessary genes to produce the child were transmitted) and

X = P(the necessary genes to produce the child were transmitted
to the mother if the putative father was the father).

Appendix G shows this calculation for the example considered in Appendices D and
F. The calculation of gene transmissions is illustrated in the demonstration
that the probability of a random man transmitting a gene is just the gene
frequency of a random man. The consideration of the genetically possible ways
that the mother and a random man or putative father can transmit genes makes Y
and X more informative than Y' and X'.

The paternity index is sometimes defined9 as X'/ Y' and sometimes' as X/Y.
As the example of Appendices F and G show, these are not the sane. This
illustrates that users of probabilities in paternity disputes must be very
careful with their definitions.

The combination of Xi 's and Y.i's from different genetic systems into

a composite X and Y requires independence of the systems in order for the
multiplication procedure,

X = XX 2  Xfinal system and

SY 1 YIY2 "" Yfinal system I

to be valid. When systems are not independent, they must be combined into
a single system as indicated in Appendix H.

V. BAYES FORMULA. The likelihood of paternity for the putative father
is given by

W = P(the putative father is the father given that the necessary
set of genes have been transmitted to the mother to produce
the child).
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Since the child exists and accurate genetic testing is assumed, W reduces the
probability that the putative father is the father. Examination of X and Y
shows that W, X, and Y are related by Bayes Formula.' By using P and I-P to
denote a priori probabilities of paternity for the putative father and random
man, W may be written as

SWa XP
• X P + (I:PT Y

The a priori probability P is an integral part of the calculation of W.
As seen in Appendix I, which continues the example started in Appendix D, the
selection of a number for P influences the numerical value of W. In some
paternity calculations, P is set at one-half'; the argument for this substitution
is that nothing is really known other than the genetic test results. In other
analyses, some values such as seven-tenths is used on the assumption that this
is the proportion of valid paternity claims which women bring to court."'
Obviously, the judge and/or jury should consider the non-genetic evidence in
each case and subjectively establish the a priori value P.

VI. STATISTICAL RISKS. The putative father may be a random man whose
genetic characteristics Tjust happen to yield a high W value. 1 0 The likelihood
of this happening to a man who is not the father is

aPUF,min = P(finding a possible father whose likelihood of
paternity is as great or greater than WPUF when
the putative father and possible fathers are
random men).

A calzulation of this minimum, putative father's risk is illustraLed in
Appendix J for the example started in Appendix D.

The putative father may be the father but the genetic characteristics
of the mother, child, and father may just happen to yield a low W value."
The likelihood of this happening is

= P(the mother and putative father having a child whichresults in the putative father's likelihood of

paternity being as low or lower than WPUF when the
putative father is the father).

A calculation of this minimum mother's risk is illustrated in Appendix K for
the example started in Appendix D. This risk becomes the state's risk if the
state is to pay child support when neither the mother or the putative father
provide it.

VII. HYPOTHESIS TESTING. A comprehensive and combined use of the
probabilities in a paterni-ispute may be made with a hypothesis test.' 0

The null and alternate hypothesis with the associated risks are:
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H : The putative father is not the father a
0

where HA: The putative father is the father B

- •where

a P(rejecting the null hypot~hesis, that the putative father ,
is not the father, when he really is not the father) and

= P(accepting the null hypothesis, that the putative father
is not the father, when he really is the father).

This hypothesis test is structured according to the traditional asstmption of
the United States legal system. Innocence (i.e., non-paternity) is assumed as
long as there is reasonable doubt of guilt (i.e., paternity). This hypothesis
test may be performed by using the analysis table of Appendix L; this conpletes
the numerical example of Appendices D, F, G, I, J, K, and L which uses the
hypothetical genetic systems of Appendices A, B, and C whose discrimination
in an average paternity dispute is calculated in Appendix E.

A court's use of the analysis table certainly does not relieve the
court of its judgment. In fact, the court must make knowledgeable and
. udicious determinations to use the procedure. This seven-step procedure is
described in Appendix M. The result of the procedure may very well be that a
decision cannot be made without either obtaining more genetic infoimation or
lowering the risks that the court is willing to take. This need for more
definitive tests may occur for the reasons listed in Appendix N. The
hy)pothetical example calculated in this paper, which culminated in Appendix L,
is not very definitive. The results of a more definitive example is shown in
Appendix 0. Appendix P shows possible uses of this analysis table.

The number of actual cases that have been analyzed by the technique
proposed in this paper is quite small. For these cases, Appendix Q presents
(1) the line of the analysis table which has the putative father's posterior
probabilities of paternity and (2) the entry in the a column which is either on
or just above the putative father's line. The values were calculated from six
red cell antigen systems recommended by the Texas Society of Pathologists; these
are ABO, NN4Ss, Rh, Kell, Duffy, and Kidd systems. These analyses were done
before the availability of HLA testing so they are not as definitive as
currently possible. Although a lack of small a and B risks may disturb the
analyst, the results in Appendix Q are useful when the non-genetic evidence
indicates a high value of P; for each case, a hypothesis test may be used in
ruling against the putative father. The fact that a test has a high a risk
has little meaning when the ruling favors the mother anyway; the important
risk is that of the party who is not favored by the ruling.

VIII. DISCUSSION. The basic philosophy behind the use of probabilities
in paternity disputes is that all available information should be used in
paternity judgments. Unless probabilities are used, genetic tests add nothing
to the decision making process when the putative father is not excluded.
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Although probabilities can never result in certainty of the necessary decision,
they can certainly add infornation when no exclusion is obtained. Even if an
apparent exclusion is obtained in one genetic system, probabilities based on
other systems can be used to get an indication of the possibility of a false
exclusion.'

Since genetic tests are conron and even required in many states before
a paternity dispute can be brought to court, all possible information from
the tests should logically be available for the court. The difficulty of
presenting probablistic information is that many different probabilities can
be discussed and confusion easily results. This is the reason for organizing
the results in an analysis table as shown in Appendices L and 0. The court
should have an Luibiased presentation of probabilities; the analysis table
provides such a presentation.

Judges and/or juries should be hesitant to use partial probablistic
arguments which can easily be given biased interpretations by lawyers in an
antagonistic legal system. Since no information is normally provided about
the putative father's and mother's risks denoted in this paper by a and B,
the courts are justifiably hesitant to apply much weight to the probabilities
that are presented. This hesitancy is especially justified when the probablistic
argument does not let the court choose the a priori probability denoted by P
in this paper. A useful analysis must include all genetic and non-genetic
information. It also must describe all risks involved without unduly
emphasizing any one of them.

There is occasionally a hesitancy to use a decision making process that
a•nits any uncertainty Ln the final decision. This attitude can never be
completely eliminated; but the person performing and/or presenting a probability
analysis must stress that certainties are very rare and analytical consideration
of uncertainties is essential to intelligent decision making.

Thaere is occasionally a reluctance to perform a long tedious calculation.
Thi. attitude can influence the preparation of the procedure proposed in this
paper be-ause the number of calculations expands rapidly when the lists of
possible fathers and possible children lengthens as more genetic systems are
added to the calculation. 'There is an obvious and successful method of avoiding
the tedium and possibility of numerical mistakes; the whole procedure may be
computerized. To write the necessary program, it has naturally been necessary
to use both logical and arithmetic programming techniques.

There is a hesitancy of some analysts to use any hypothesis test which
does not have very low values for both the a and B risks. The analyst's job
in paternity disputes is not to set risks. The analyst must explain the
meaning of the risks to the judge and/or jury; the court must then assign the
numerical values to all parameters that affect the use of the analysis table.
The court may very well wish to assign different limits on the risks of the
putative father and the mother or state. This decision involves the relative
cost of nmaking a mistake; and only the holders of ultimate responsibility
should set risks of making mistakes.
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There is a reasonable hesitancy of analysts to use imprecise data. This
leads to two concerns in the calculation of paternity probabilities. First,
the combination of the results from different genetic systems requires the
different systems to be independent. If this is not true, a combined system
such as illustrated in Appendix H must be used. If the gene frequencies for
this single system aie not available, the only prudent courses of action are
(1) ignore both systems or (2) present two analyses with each considering one
of the two non-independent systems. It is extremely dangerous to use the system
which the analyst consideres to yield the most informative results; this is done
in some European analyses' but it amounts to selecting data which will yield a
result of predetermined bias. Second, the gene frequencies of the genetic
systems must be known for all involved populations. Although the medical
profession must collect the data for these populations, there is no real medical
application for gene frequencies. This is especially true for a combined system
made from two or more non-independent systems. When the analyst is not given
accurate population gene frequencies, he must repeat the calculation for several
sets of gene frequencies which surround Lne true population frequencies.
Selecting the frequencies to use, interpreting the results for each system,
and combining the results of the different systems requires more analytical
judgment then merely inputting data to a computer and reading the final result.
This is the real job of the analyst.

Perhaps the most important prerequisite for widespread use of probabilities
in paternity cases is a standardized format. There are many probabilities
involved and many people need to use them. Confusion will be both possible and
likely until some standardized presentation is accepted. This needed standardi-
zation is one important reason for the use of the analysis table shown in
Appendices L and 0. One method of obtaining standardization would be for state
legislatures to prescribe a format for information to be presented in court.
If the state legislature did this, they might very well want to provide guidance
in the numerical values to be used for the limiting risks a L and 8 L and the

decision level WC that are required in the procedure of Appendix M. This

guidance would, of course, have to provide a list of feasible genetic systems
and a procedure to be followed if this list were exhausted without yielding
sufficiently low values of test risks a and aT to result in a decision.
Finally, state legislatures might very well want to direct state organizations
such as medical schools to compile gene frequencies for genetic systems and
combinations of systems that are not well known to be independent.

IX. PROSPECTS. The use of probabilities in paternity disputes is very
fragmentary in the United States. It is much more prevalent in European courts.
Differences in the European and United States legal systems have prevented the
spread of the technique to the United States.

The use of probabilities will undoubtedly grow in the United States. One
reason is that scientific methods and statistical analyses are continuously
becoming more understood. Another is that future availability of the putative
father's and mother's risks, which are not used in European courts, should
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satisfy objections that an incomplete and even erroneous description can be
obtained by focusing all of the court's attention on a single and non-
comprehensive probability.
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APPENDI X A

FIRST HYPOTIHETICAL GENETIC SYSTEM FOR RANIXDM MAN

POSSIBLE PHENOTYPE
ENOTJYPES [I] GEN• YPES [ij] FREUENCIES [P(I)]

Q aa P(Q) - .16
R bb. or ab P(R) = .33
S cc, cd, or ac P(S) = .24
T dd or ad P(T) = .09
U bc P(U) = .12
V bd P(V) = .06

RELATIONS USED TO FIND GENE FREQUENCIES [P(i)]:

P(Q) [P(a)] 2

P(R) [P(b)] 2 + 2P(a)P(b)
P(S) [P(c)] 2 + 2P(c)P(d) + 2P(a)P(c)

P(T) [P(d)] 2 + 2P(a)P(d)

P(U) = 2P(b)P(c)
P( V) = 2PCb)P(d)

LEAST SQUARES SOLUTION FOR P(i)'s MINIMIZES 62:

62 = fP(Q) - [P(a)] 2 ) 2 + {P(R) - [P(b)] 2 - 2P(a)P(b)) 2

+ {P(S) [P(c)] 2 - 2P(c)P(d) -2P(a)P(c)}2

{P(T) - [P(d)] 2 - 2P(a)P(d)1 2 
' {P(U) 2P(b)P(c)}1

" (P(V) - 2P(b)P(d)) 2

GENE FREQUENCIES:

i a b c d
PCi) W .4 .3 .2 .1

GENOTYPE FREQUENCIES [p (ij)]:
a b c d

a .16

b .24 .09
c .16 .12 .04

d .08 .06 .04 .01
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APPENDIX B

FIRST HYPOTHETICAL GENETIC SYSTEM FOR ADULTS IN THE CASE

MOTHER

GENE FREQUENCIES:

i a b c d

P(i) 1 .42 .31 .19 .08

GENOTYPE FREQUENCIES:
a b c d

a .1764

b .2604 .0961

c .1596 .1178 .0361

d .0672 .0496 .0304 .0064

PHENOTYPE FREQUENCIES:

I QR S T u v

P(1) .1764 .3565 .2261 .0736 .1178 .0496

PUTATIVE FATHER

GENE FREQUENCIES:

i I a b c d

P (i) .38 .29 .21 .12

GENOTYPE FREQUENCIES:

a b c d

a .1444

b .2204 .0841

c .1596 .1218 .0441

d .0912 .0696 .0504 .0144

PHENOTYPE FREQUENCIES:

I I Q R S T O V

P(I) .1444 .3045 .2541 .1056 .1218 .0696
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APPENDIX C

SECOND HYPOTHETICAL GENETIC SYSTEM

PHENOTYPES: JJ JK KJ

POSSIBLE GENOTYPES: JJ JK KK

GENE FREQUENCIES:

i P(i)

J .3
RM4 =LAINIOM MAN

K .7

1 .4
MI = •DT11-R

K .6

J .2
PUF = PUTATIVE FATHER

K .8

GENOTYPE FREQUENCIES:

RM J K M J K PUF J K

J .09 J .16 J .04

K .42 .49 K .48 .36 K .32 .64

PHENOTYPE FREQUENCIES:

I P(l)

11 .09

RM JK .42
KK .49

JJ .16

M JK .48

KK .36

JJ .04

PUF JK .32

KK .64
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APPENDIX D

PROBABILITIES OF EXCLUSION IS A SPECIFIC CASE

DEFINITIONS

N1 Mother
C Child

POF Possible Father

STransmits
RN Random Man

G Gene POF Must

P(RM could - G)

Z P(RM tests as if he could . G)

Pe P(RM could not - G)

Pex P(RN1 is Excluded by Tests)

SYSTEM4 1 SYSTEM 2

N = S = cc, dc, or ac M = JJ

C = T = dd or ad C = JK

N! = cd or ac
POF- a or d POF-• K

POF aa, ab, ac, ad, bd, cd, or dd POF a JK or KK
POF = Q, R, S, T, or V

Z' = P(RM aa, ab, ac, ad, bd, cd, or dd) Z' - PM JK or V)
= .16 + .24 + .16 + .08 + .06 + .04 + .01 - .42 ÷ .49

= .75 = .91

Z = P(RM Q, R, S, T, or V) Z a ZA

= .16 + .33 + .24 + .09 + .06 = .91

= .88

OCCBINATION
V Z- -- (.75)(.91) = .6825

Z Z 1 Z2 = (.88)(.91) * .8008

Px 1 - Z' 1- .6825 .3175

Pex 1 - Z = 1 - .8008 =.1992
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APPENDIX E

AVERAGE PROWABILITY OF EXCLUSIONS

Sy STEN• 2_[

M P (M) C P(CIM) POF z

jj .16 JJ (M)(.3) JJ, JK .09 + .42

jj .16 JK (1)(.7) J1K, KK .42 + .49

JK .48 JJ (I/2)(.3) JJ, JK .09 + .42

JI .48 JK (I/2)(.3) JJ,JK,KI( .09 * .42 + .49
+ C1/2) (-7)

JR .48 KR (1/2)(.7) JK, K, .42 * .49

KR .36 JK (1)(.3) JJ, JK .09 + .42

KK .36 KI( (1)(.7) JK, M( .42 + .49

POC IN
SYSTEN 2

Z2,ave P .(M), P (CIM) Z- .8404
i

SYSTEM 1

M P(M) C M C P(CIM)

Q .1764 Q aa aa (1)(.4)
Q .1764 R aa ab (1)(.3)
Q .1764 S aa ac (1)(.2)

Q .1764 T aa ad () (.1)

R .3S65 Q ab aa (.2604/.3565)(1/2)(.4)

R .3565 R bbpab bb,ab (.0961/.3565)(1)(.3÷.4)
+ (.2604/.3565)[(1/2)(.3)+(1/2) (.3+.4)'

R .3565 S ab ac (.2604/.3565)(1/2),(.2)

R .3565 T ab ad (.2604/.3565)(1/2)(.1)

R .3565 U bb,ab bc (.0961/.3565) (1) (.2)
+ (.2604/.356S)(1/2)(.2)

R .3565 V bb ,ab bd (.0961/.3565) (1) (.1)
+ (.2604/.356S)(1/2)(.1)
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NI_ P (m) c c P (C N)

s .2261 Q ac aa (.S9S/.2261)(1/ 2 )(. 4 )
S .2261 R ac ab (.1596/.2261)(1/2)(.3)

S .2261 S cc,cd, ccdc (.0361/.2261)(1)(.2+.1+.4)
ac ac + (.0304/.2261)1(1/2)(.2+.l÷.4)

+ (1/2)(.2)]
+ (.1596/.2261)[(1/2)(.2)

+ (1/2)(.2+. 1+.4)]

S .2261 T cd,ac dd,ad (.0304/.2261)(1/2)(.1÷. 4 )
÷ (.1596/.2261)(112)(.1)

S .2261 U cc,cd, bc (.0361/.2261)(1)(.3)
ac + (.0304/.2261)(1/2)(.3)

+ (.1596/.226])(1/2)(.3)

.2261 V cd bd (.0304/.2261) (1/2) (.3)

T .0736 Q ad aa (.0672/.0736)(1/2)(.4)

T .0736 R ad ab (.0672/.0736) (1/2) (. 3)

T .0736 S dd,ad cd,ac (.0064/.0736)(1)(.2)
+ (.0672/.0736)[(1/2)(.2)

+ (1/2) (.2)]

T 0736 T dd,ad dd,ad (.0064/.0736)(1)(.14.41
+ (.0672/.0736)[(1/2)(.1)

+ (1/2)(.1l.4)]
S.0736 dd,ad bd (.0064/.0736)(1)(.3)

+ (.0672/.0736)(1/2)(.3)

U .1178 R bc bb,ab (1/2) (.3+.4)

U .1178 S bc cc,cd,ac (1/2)(.2+.l+.4)

U .1178 U bc bc (1/2) (.2)+(1/2) (.3)

U .1178 V bc bd (1/2)(.1)

V .0496 R bd bb,ab (i/2)(.3÷.4)
V .0496 S bd cd (1/2)(.2)
v .0496 T bd dd,ad (1/2)(.I+.4)
\V .0496 U bd bc (1/2)(.2)

V .0496 V bd bd (1/2) (.1)+ (1/2) (.3)
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GENES 'lldE FATiER MUST PROVIDE
AS INDICATED BY .4, .3, .2, Zz
AND .1 FOR a, b, c, AND d,
RESPECTIVELY

.4 .16+.244.16+.08-.b4 .16+.33+.24+.09=.82

.3 .24÷.09+.12+.06=.51 .33+.12+.06 .51

.2 .16',.12+.04+.04=.36 .24+.12-.36

.1 .08+.06+.04+.01=.19 .24+.09+.06-.39

.4 and .3 .164.24+.16+.08 .16+.334.24+.09
4.09+. 124.06=. 91 4.12+.06-1.0

.4 and .1 .16+.24+.16+.08 .16+.33+.24+.09
+.06+.044.01=.7S +. 06. 88

.3 and .2 .24+.09+.12+.06 .33+.124.06
+.16+.04+.04=.7S +.24=. 75

.3 and .1 .24+.09+.12+.06 .33+.12÷.06
+.08+.04+.01=.64 +.24+.09-.84

.4, .2, and .1 .16+.24+.16+.08 .16+.33+.24+.09
+. 12+. 04+. 04 4.12

+. 06+. 01-. 91 4.06=1.0

POC IN
SYSTEM 1

Pi(M) Pi(CI,) Z- : .6771i

POC IN
SYSTEM 1

Ziave : Pi(M) Pi(CIM) Zi .7646

Z- Z- Z; : (.8404)(.6771) S .569

Z = Z1 Z2 = (.8404)(.7646) = .643

P =x 1 - Z = 1 - .569 = .431
e

P = 1 - Z = 1 - .643 = .357
ex
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APPENDIX F

CONDITIONAL PROBABILITIES BASED ON EXISTENCE OF PHENOTYPES

ADDITIONAL DEFINITIONS

F Father

PUF Putative Father

Y' P(PUF's Phen'otypelM's and C's Phenotypes and PUF#F)

X, P(PUF's Phenotype{M's and C's Phenotypes and PUF=F)

SYSTE•' 1 SYSTEM 2

SS= cc, cd, or ac M = JJ

C T = dd or ad C = JK

: .d or ac

P, - a or d POF * K

POF = Q, R, S, T, or V POF JK or KK

PUF = S PUF = JK

Y' = P(PUF =SIPUF =P\) Y- = P(PUF =JKJPUF Fi"
= .24 = .42

X" = P(PUF - SIPUF = Q, R, S, T, or V) X- = P(PUF = JKIPUF = JK or KK)
= .2541/(.1444+.3045+.2541+.i056+.0696) = .32/(.32+.64)
= .2893 = .3333

Y'/X- = .2400/.2893 Y-/X- = .4200/.3333
S.8296 - 1.260

COMBINATION

Y" Yj Y- i (.2400)(.4200) - .1008

X Xi X =(.2893)(.3333) = .09642

Y'/X = .1008/.0964 1.05
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APPENDIX G

O)NDITIONAL PROBABILITIES BASED ON GENE TRANSMISSION

ADDITIONAL DEFINITIONS

G Any Genes That Could Be

anyV. Y P (C was +I WM Gay

X P(G was HJPUF Cany)

SYSTEI 1 SYSTEM. 2

M S = cc, cd, ac M JJ

C = T = dd or ad C JK

M = cd or ac

POF - a or d POF K K

PUF = S = cc, cd, or ac PLF JK

P (RWa) = P (I=aa)P(aa-a)+P(RP=ab)P(ab-a) P(R104-J) P P(It=JJ)P(JJ-,J)
+P (P=ac) P (ac-a) +P (RW=ad) P (ad-oa) +P (RM--JK)P (JIK-J)

= (.16) (1)+(.24) (1/2) = (.09) (1)+(.42) (1/2)
+ (. 16) (1/2)# (. 08) (l/2) =.3

= .40 - P(J) as expected
= P(a) as it should

P (.'=cd) = .0304/(. 0304+. 1596) - . 1600 P CM-=JJ) - 1

P(M=ac) = .1596/(.0304+.1596) = .8400

Y = P(FIcd)P(cd-d)(P(RI-'d)÷P(RMa)] Y = P(JJ-1)P(R4-K)
÷P(ýý-ac)P(ac-a)P(R14-l) = (1) (.7)

-- (.1600)(1/2)(.l+.4)+(.8400)(1/2)(.1) =-.7
= .0820

P(PUF-•d) = P(PUF=cd)P(cd-'d) P(PUF+K) 1/2
= (.0504/.2541) (1/2)
= .0992

P (PLTF-a) = P(PP2=ac)P(ac-a)
= (.1&i•6/.2S41) (1/2)

= .3140
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SYSTI3 1 (Continued) SYSTEM 2 (Continued)

X = P(N=cd)P(cd~d) [P(PLJF+d)+(PUFha)] X = P(JJ--J)P(P1JF-+K)
÷+P(M'ac)P(ac+a)+(PUF-d) - 1(1/2)

= (.1600)(1/2)(.0992+.3140) = .500
+(.8400) (1/2) (.0992)

= .0747

Y/X = .0820/.0747 = 1.10 Y/X- .7/.5 a 1.40

Y = YI Y2 = (.0820)(.7) = .0S74

X = X1 X, = (.0747)(.5) = .0374

Y/X = .0574/.0374 = 1.53
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APPENDIX H

TABLE OF COMXBINED SYSTBM TO REPLACE
* ThE HYPOThETICAL SYSTBKS 1 AND 2 WHEN THEY ARE NOT INDEPENDENT

Q R S T U V
•:, •PHI PH1 PH'1 PH1 1PH1 PHI

11 2.1314 is 1

JK PH2 1  PH 22  PH2 3  PH24  PH 2S PH26

xx PH3 1  PH32  PH 3 3  PH34  PH35  PH36

The nwuber of phenotypes in a combined system is the product of the nunber of
phenotypes in the individual systems.
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APPENDIX I

APPLICATION OF BAYES THEORa1

ADDITIONAL DEFINITIONS

W P(PUF - G *n G was)

P P(PUJ-=F on the basis of all non-genetic information)

P(G was PLUF -+ G any) P

P(PUF G anyG was -w.) PP(G -aG P - ) P P (G was RM+ G a) (l-P)
anyany any

" ~ i.X P
XP+Y(I-P) ( -I

For Y/Xt- 1.53 (from Appendix G),

P 0 .1 .2 .3 .4 .S .6 .7 .8 .9 1.0

W 1 0 .068 .140 .219 .303 .395 .495 .604 .723 .855 1.00

An alternate presentation of the P - W Table is a graph of P versus W:

A PKMZ %" P LUD~4V OF PATEWZTY
I.4-

4.2-

II.I

a..

3.4

I1°1

0.0 0.1 0.2 S.S 0.4 0.5 0.0 6.7 0.6 .0 1.0

P - A PRM PWM8ZTYj
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APPENDIX J

MINIDUM PUrATIVE FATHER'S RISK

ADDITIONAL DEFINITIONS

XpuF X of the PUF

XPOF=I X of a POF of I'th Phenotype from RA Population

W of the PUF

WPOF W of a POF

aPUF,mi~n PCWpOF > WPuF PUF =RM)

SYSTT31 1 SYSTEM 2

M = S = cc, cd, or ac M - JJ

C = T - dd or ad C - JK

M = cd or ac

P(4acd) = .16; P(M=ac) .84'
(from

Y = .0820 Appendix G) Y = P(M.J) P(14M-K) (i)(.7)

Y/XpUF= 1.10 Y/XpUF - 1.4 (from Appendix G)

POF a or d POF K K

POF Q,R, S, T, or V POF JK or KK

xPOFaI P (=cd)P (cdld)[ P(RM Id).P(RM1 a)] XPOF' I P(M-J)P(RMw-+K)

+ P(M=ac)P(ac~a)P(RI 1i-•d) :O,

xPOFQ = (.16)(1/2)(0+1)+(.84)(1/2)(0) O - (1)(1/2)
-.0800 .500

POF-R (.16)(1/2)[0+(.24/.33)(1/2)] XPOFI (1) ()
+ (.84)(1/2)(0) - 1.00
.0291

XPOF-S (. 16)(i1/2) [(.04/.24) (1/2)
+(.16/.24) (1/2)]

+ (.84)(1/2)(.04/.24)(1/2) .0683

xFOF=T (16) (1/2) [ (.0l/.09) (1)
÷ (.08/.09) (1/2)
+(.08/.09) (1/2)]

+ (.84)(1/2)[(.01/.09)(1)
.313 486



SYSyT'EM 1 (Continued) SYSTU 2 (Continued)

S xPOF=V = (.16)(1/2)(.5+0) + (.84)(1/2)(.5)

- .250

y/xPOF=Q .082/.0800 = 1.02 Y/XOFJK = .7/.500 1.40

Y/XPOF=R = .082/.0291 = 2.82 Y/X PF = .7/1.00 o .700

Y/XPOFS = .082/.0683 = 1.20

POF=T
Y/X = .082/.313 - .262

Y/x PFI = .082/.250 = .328

C0.IBINATION

y/XpuF = (Y1/X 1,PUF) (Y2 /X2 ,PUF)= 1.53

POF P(POF) = P(1l)P(1 2 ) (Y/X) = (Y/X)IQ'/X) 2  IS (Y/X) < (Y/X.LuF)

Q and JK (.16)(.42) = .0672 (1.02)(1.40) = 1.43 YES

Q and aK (.16)(.49) = .0784 (1.02) (.700) = .714 YES

R and JK (.33)(.42) = .1386 (2.82)(1.40) = 3.95 NO

R and KK (.33)(.49) = .1617 (2.82)(.700) = 1.97 NO

S and JK (.24)(.42) = .1008 (1.20)(1.40) - 1.68 NO

S and KK (.24)(.49) = .1176 (1.20)(.700) = .840 YES

T and JK (.09)(.42) = .0378 (.262)(1.40) - .367 YES

T and KK (.09)(.49) - .0441 (.262)(.700) = .183 YES

V and JK (.06)(.42) - .0252 (.328)(1.40) = .459 YES

V and KK (.06)(.49) = .0294 (.328)(.700) = .230 YES

Z - Z1 Z2 = .8008

all i for which
(y/xjw<(=/XI1F) P (POF) .3997

PUFraini
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APPENDIX K

MINIM MOTHER'S RISK

ADDITIONAL DEFINITIONS

POC Possible OCild of M and PUF

Y Y for a Child of Phenotype I

X --J X for a Ch.ild of Phenotype I when the PJF has Phenotype 3Cal
P(POC=I) Probability that M and PUTF will have Child of Phenotype I

11poC: W for PUF if PUF and M had POC

8M,min P(WPOC < WPU`F1 P!JF = F)

SYSTMI 1 SYSTEI 2

P = S = cc, cd, or ac M a JJ

C = T - dd or ad C = JK

M = cd or ac

Unless M has C#T, P(M=ac) = .841from
P(M=cd) .16J Appendix G

PUF = S - cc, cd, or ac PUF = JK

POC = aa, ac, ad, cc, cd, or dd POC - JJ or JK

POC = Q, S,or T

If POC - Q, M = ac
P(M=ac) = 1

If POC - S, M - cd or ac
P(M-cd) - .16; P(Nac) = .84

If POC = T, M = cd or ac
P(0=cd) = .16; P(M-ac) - .84

P(PUF-a) - (.1S96/.2S41)(1/2) - .3140 P(PUPrJ) - 1/2

P(PUF'c) = (.1596/.2541+.0504/.2541)(1/2) P(PUF+K) - 1/2
+ (.0441/.2S41)(1) = .S868

P(PUF-d) - (.0S04/.2541)(i/2) = .0992
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SYSTEM 1 (Continued) SYSTDI 2 (Continued)

yc- = C(M-ac)P(ac.+a)P(RMi-a) y *i P (JJ-J) P (P.J)
'CQ a (1)(1/2)(A4) - .200 = (1)(.3) - .300

xPUFS -P(M1,=ac)P(ac-a)P(PUF-a) x aFJ P (JJ.J) P(PUP-e.J)C2Q = (1)(1/2)(.3140) =.157 C~i .(1)(1/2) -. 500

* PUF=JK,t IZ ý .200/.S .7y / /S=.0C-Q, C=Q 1.157 =12YCJ/C=JJ =.3. =.0

P(POC=Q) =P(N!=ac)P(sc-ea)P(PUJF~a) p(poC=jj) =PF=)

-(.84) (1/2) (.314) -=J

= .132 .500

S-S P (,%=ac) (P (aci~a) P(RM~c) y C=. J P (JJ-J) P (I104K)
*P(ac-ec)P(RM-.~a,c, or d)] =(1)(.7) = .700

+ P (\=cd) [ P(cd-,.d) P(R-
+P(cd-ec)P(RIMea,c, or d)]

=(.84)[(1/2)(.2ý)#(1/2)(.4+.2+.l)]
+ (.16)[(1(/2)(.2)+(1/2)(.4+.2+.l)]
.450

XPLUFS P PM= ac) [ P(a.:-,a) P(PUF-*c) x PF=JK . P (JJ-*J) P(PUTF-K)C-S +P(ac-c)P(PUTh-a,c. or d)] czJx (1)(1/2) = .500
+PC,,Icd) IP(ci-.d)P(PUW-*c)

.iP(cd-.c)P(PUF--a,c, or d)]
=(.34) [(1/2)(.5868)+(1/2) (1)]
+ (.16) [(1/2) (.5868)+ (1/2) (1)]

-. 793

IPUPFS YcJK/X JK a.5 14
y C=S/ C=S = .450/.793 = .S67 PUFJKXC-JK ./S 14

P(POC=S) = ca=S_______ .793___ P(POC=JK) PU=J .S00

YC=T P P(i~i-ac) P(ac-.a) P (RM-ed)4
+ P(Mi=cd)P(cd-ed)[P(RMv-ed)+P(RM-e-a)]
=(.84)(1/12)(.1) +(.16)(1/2)(.l+.4)

.820

CP~S=T P (Ma P (ac-ba) P (PUP-ed)CT+ P(Nm~cd)P(cd-ed) [P(PUF-d)+P(PJF-'a) I
= (.84)(1/2)(.0992)

+ (.16) (1/2) (.0992+.3140)
= .0747

yCT/XGT a .0820/.0747 =1.10

P(POC=-T) X .T07S
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C*MBINATION

¥/XuPW 1.53 from Appendix G or J or K

POC P(POC) = P(POC1 )P(POC2 ) (Y/X) - (Y AX1)(Y 2/X2 ) IS ('Y/X) _> (Y/Xpu

Q and JJ (.132)(.SOO) m .066 (1.27)(.600) - .762 NO

Q and JK (.132)(.SOO) = .066 (1.27)(1.40) - 1.78 YES

S and JJ (.793)(.S0O) - .397 (.567)(.600) - .340 NO

S and JK (.793)(.S00) -. .397 (.567)(1.40) - .794 NO

T and JJ (.075)(.500) = .037 (1.10) (.600) - .660 NO

T and JK (.075)(.SOO) = .037 (1.10)(1.40) = 1.53 YES

P(all POC) - 1.000

all i for which
(/I/min = . P (POC)Y- .103
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APPENDIX L

ANALYSIS TABLE

ADDITIONAL DEFINITIONS

Putative Father's Risk

I Mother's Risk

Wp Likelihood of Paternity for a priori value P

I N PU T I NF R ATI ON AN A LY SI S TA B L E
ORDERED

Y/X VALUES
FHIO ' INPUT B INPUT

APPENDICES FROM FROM
J MND K APPENDIX J APPENDIX K _ _ 1/10 W1/2 W9110

0.0000 1.000

.183 .0441 0.0441 .378 .845 .980

.230 .0294 0.0735 .326 .813 .975

.340 .397 1.000 .246 .746 .964

.367 .0378 0.1113 .232 .732 .961

.459 .0252 0.1365 .195 .685 .951
.660 .037 0.603 .144 .602 .932

.714 .0784 0.2149 .135 .583 .926

.762 .066 0.566 .127 .568 .922

.794 .397 0.500 .123 .557 .919

.840 .1176 0.3325 .117 .543 .915

1.43 .0672 0.3997 .072 .412 .863

1.53 .037 0.103 .068 .395 .85S

1.68 .1008 0.5005 .062 .373 .843

1.78 .066 0.066 .059 .360 .83S

1.97 .1617 0.6622 .053 .337 .820

3.95 .1386 0.8008 .027 .203 .696

Z .8008 1.000 1.0000 0.000

The putative father's line is the one
containing W/2= .395
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APPENDIX M

IIYOTHESIS TEST PROCEDURE

1. Set a numerical value of CXL = "the largest allowable risk of erroneously

deciding that the putative father is the father.

2. Set a numerical value of BL = the largest allowable risk of erroneously

deciding that the putative father is not the father.

3. Set a numerical value of WC = the lowest pr6bability of paternity which
implies that the putative ther is the father.

4. Set a numerical value of P = the "a priori" probability of paternity

for the putative father.

S. From the Analysis Table, obtain aT - the risk in this particular test

of erroneously deciding that the putative father is the father. This

is the number at the intersection of the alpha columr and the row of the

smallest number in the appropriate Wp column which is not smaller than
Wc; if this location is vacant, use the nurber immuediately above the

intersection.

6. From the Analysis Table, obtain 5T = the risk in this particular test
of erroneously deciding that the putative father is not the father.

This is the ntmber at the intersection of the beta column and the row

of the largest number of the appropriate W p column which is smaller than

WC; if this location is vacant, use the number immediately below the

intersection.

7a. If (1) a T is not larger than a L, (2) aT is not larger than aL' and

(3) Wp of the putative father is as large or larger than WC; conclude
that the putative father is the father.

7b. If (1) aT is not larger than aL, (2) aT is not larger than BL' and

(3) Wp of the putative father is smaller than WC; conclude that the

putative father is not the father.

7c. If (1) aT is larger than a L and/or (2) BT is larger than 6L' recognize
that the test results are inconclusive and more genetic tests are

necessary to reduce aT. and/or OT'
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APPENDIX N

REASONS MORE GE\'h7IC TESTS MAY BE REQUIRED
TO MAKE THE ANALYSIS TABLE MORE DEFINITIVE

1. The court may be overly stringent and set al. and/or %L too low.

2. The court may set WC high and thus cause T to be high.

3. The court may set WC low and thus cause CT to be high.

4. The court may set P high and thus cause aT to be high. In the limit

as P approaches 1.0, OT approaches 1.0; this statistically states that

a putative father who really is not the father has no chance if the

court is ce•-tain that he is the father.

S. The court may set P low and thus cause ýT to be high. In the lim.it
as P approaches 0.0, ýT approaches 1.0; this statistically states that

a putative father who is the true father will not be judged to be the

father if the court is certain that he is not the father.

6. Finally, the genetic tests may not be sufficiently definitive. Performing
genetic tests using more marker systems will, on the average, tend to

either (a) lower the alpha and beta risks of the tests and (b) drop the

probability of paternity to exactly 0.0 if the putative father is not

the father or raise the probability of paternity toward 1.0 if he is

the father.
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APPENDIX 0

EXAMPLE OF STANDARD THREE PARTY PATERNITY DISPUTE ANALYSIS

GENERIC SYSTE2tS ANALYZED: ABO and Kell

PHENOTYPES: Mother - 0 and kk, Child - A2 and kK, Putative Father - A2B and kK

RACIAL BACKGROUNDS: Mother = Mexican-Aynerican; Putative Father , Anglo

GEOGRAPHIC AREA: El Paso, Texas

ALPHA BETA W1/10 W 1/3 W1/2 W 2/3 W9/10

0.00000 1.00

1.00 0.948 0.988 0.994 0.997 0.999

0.88 0.948 0.988 0.994 0.997 0.999

0.00013 0.851 0.963 0.981 0.990 0.998

0.00068 0.795 0.946 0.972 0.986 0.997

0.00072 0.786 0.943 0.971 0.985 0.997

0.00848 0.741 0.928 0.963 0.981 0.996

0.04049 0.661 0.898 0.946 0.972 0.994

0.04057 0.653 0.894 0.944 0.971 0.993

0.04281 0.648 0.892 0.943 0.971 0.993

0.04312 0.621 0.881 0.937 0.967 0.993

0.74 0.532 0.836 0.911 0.953 0.989

0.04758 0.485 0.809 0.894 0.944 0.987

0.63 0.482 0.807 0.893 0.944 0.987

0.06552 0.451 0.787 0.881 0.937 0.985

0.S0 0.387 0.740 0.850 0.919 0.981

0.38 0.386 0.739 0.850 0.919 0.981

0.24 0.038 0.150 0.260 0.413 0.760

0.13 0.031 0.126 0.224 0.366 0.722

1.00000 0.00 0.000 0.000 0.000 0.000 0.000

The putative Father's Wp scores are in the row with WI1 2  0.893
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APPENDIX P

FOUR POSSIBLE USES OF ANALYSIS TABLE OF APPENDIX N

INFOPMAT ION FrOam
I N P U T DA T A ANALYSIS TABLE R E S U L T

% L Lc P OT ýT "PULF

.10 .25 .900 2/3 .06552 .24 .944 iT aL

aT a L

WPUF > 'C

Therefore PUF F

.05 .25 .900 2/3 .065S2 .24 .944 (T > aL

Therefore no
decision without
more information
or altered risk

.01 .25 .900 1/10 .00000 .74 .482 BT > BL

Therefore no
decision without
more information
or altered risk

.0$ .75 .850 1/3 .04312 .74 .807 aT ( aL
O3T 01,L

W PUP < W C

Therefore PUF # F
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APPENDIX Q

SLMAARIES OF RESULTS IN FOUR ACTUAL PATERNITY DISPUrES

CASE PUF,min BM,___ W_1/10 _1/_3 w1/_2 W_2/__3 W910

1 .077 Not .30 .66 .79 .88 .97
Available

2 .018 .49 .41 .76 .86 .93 .98

3 .022 .85 .75 .93 .96 .98 .99

4 .084 .99 .31 .67 .80 .89 .97

For a hý,othesis test to indicate a ruling against the putative father:

(1) P, the a priori or non-genetic probability of paternity of the putative
father, and WC, the critical or decision level of the posterior likelihood of

paternity, must be set such that W > Wc ; and-,

(2) aT, the risk of falsely rejecting the assunption-t',at the putative father

is not the father, must be set such that aT > _PUF,min.

For a hypothesis test to indicate a ruling against the mother:

(1) P and•WC must be set such that Wp < Wc ; and

(2) aT, the risk of falsely accepting the assumption that the putative fathei

is not the father must be set such that OT > ýM,min.

4
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AN ALGORITHM FOR TRILATERATION

James T. Hall

Atmospheric Sciences Laboratory
US Army Electronics Research and Development Command

White Sands Missile Range, New Mexico 88002

ABSTRACT

A vector algorithm is presented for determining spatial position of one
or more objects with range-only information from three noncollinear stations.
An error analysis shows the dependence of spatial position uncertainty on the
geometry of the measurement array.

INTRODUCTION

r The operations associated with the objectives of a National Range produce
technically complex problems. A prime example is the requirement for time-
space-position-information (TSPI) which is acquired by instrumentation radars.
This information is required if weapon systems effectiveness is to be evaluated.
The complexity of an evaluation is exemplified by the fact that these weapons
are referred to as "smart" or "dumb" depending largely on their inherent ability
to maneuver themselves to a predetermined target which may also be moving.

Radars likewise have moved from the category of dumb to smart, having
learned the basic laws of physics and acquired the ability to selectively
filter incoming information. This filtering is based on prior knowledge of
the physical constraints of the target involved.

The computer also points and drives the antenna based on the physical
laws of motion and uses the normal radar tracking signal to periodically
verify that its past prediction of the current target position is accurate.
This is a giant step in the basic philosophy of radar operation; it does
nevertheless, require that the antenna be pointed. This single property, i.e.,
pointing the antenna, produces virtually all the requirements and problems
with precision pedestals, calibration, and some of the propagation errors
including refractive bending.

This report is concerned with an analytical scheme which uses three
noncollinear stations for range-only measurements on any number of targets
to provide TSPI. There is, of course, no pointing antenna required in such
a system. The type of station to perform this task has come to be known as
distance measurement equipment (DME) stations. This is not a new idea, but
one that has become workable with the advent of the high-speed computer. The
principle and existence of pointing and ranging radars may never be replaced
in most applications; there are, however, many applications which require
great accuracy in spatial determination of one or more objects. For these
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applications, pointing radars become very expensive, and calibrationH procedures and checks consume increasingly more time.

°L The early DME analytical methodology and analysis was done in the
1960's [1, 2, 3]. During the early 1970's IBM, Cubic and General Dynamics
developed systems which used these analytic procedures to perform a
variety of tracking and position location problems. Current information
on these systems can be acquired from those companies.

Most analytical developments have followed the form given here with
the exception of the angle dependence given in equation (21) and its resulting
error analysis. This vector solution Is believed to offer computational

* •advantages and insight into the geometric needs of the triad.

METHOD I (INTERSECTING SPHERES)

The first and most obvious analytic method of determining the spatial
position, given three ranges from three known points, is the simultaneous
solution of three distance equations. Each distance equation can be written
to define a sphere of radius RI, i - 1, 2, 3, equal to the measured ranges
from three known points to the unknown point (x, y, z). Three intersecting
spheres define two points separated in this case by the plane of observation;
therefore, if the known points which define this plane are contained on the
earth's surface, only one point will be of real concern, i.e., that above
the plane of observation.

The location of the plane of observation is arbitrary and alternations
of the above conclusion are apparent. The only analytic requirement is
that the three known points not be collinear.

Let the observation points have locations (0, 0, 0)1 (e, 0, 0), and
(g, h, 0)3, where the subscripts denote station number. The three •quations
are then:

R2  2 y2 2 
()

RI x+y + z()

2 (x e)2 + Y2 (2)R2 *(" -e(2)

R2 (x -g) 2 + (y - h)2 + z2 (3)

with resultant solutions for (x, y, z) as:

1 (R•2  R2 + e2 (4)

2e1 2

y -LC (R 2 R2 + 2x (e g)+h + g 2 -2) +5)

498



and 2 * (R2 - - 2)½ (6)

Observe that in choosing the locations of the stations, (1) was made
the origin, and the line connecting station (1) and (2) was made the x-axis
of an orthogonal coordinate system. The three stations also define the
plane of z = 0. This, or a similar selection greatly simplifies the
solution while remaining semigeneral, i.e., this choice can always be made
when accompanies by a proper coordinate transform.

The requirement for nonlinearity of the three stations is apparent in
the solution since neigher e nor h can be zero. There are two conditions
of station geometry which permit equation (5) to have the same number of
terms as well as the form of equation (4); this will be seen to be important
in the section on Error Analysis.

The first condition is: if g - e, then equation (5) may be written as

y = -L (R -_R 3 + h2) (5a)

and the second condition is: if g - o, equation (5) will be

y a 1 (R 2 R2 + h2 (5b)

2hi; ( 1  3 ~ 2

These conditions require only that the choice of station positions
constitute an orthogonal array.

METHOD II (VECTOR)

This method is somewhat more complex In appearance, but for a general
application of DME data to acquire a solution for spatial position it Is
remarkably simple when compared to that required using Method I. It also
gives a better insight into the geometry requirements of trilateration, thus
providing knowledge necessary to achieve the measurement configuration for
best accuracy with a given number of stations. It provides directly a vector
solution which lends itself to "tracking" problems very well. For these and
other reasons which become apparent, this method constitutes the major effort
of this report.

Given three noncollinear stations F, M, and C with three correspondingly
measured ranges R1 , R2 , and R to any unknown single point, one can derive
the position vector j in terms of two base line vectors M and Z and their
cross-product as follows (Figure 1).
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The vector can always be written as a linear combination of the vectors
M, •, and (M x •) as:

S- aM• + bý + d(M x '). (7)

where M x C denotes the cross-product of M and

The vectors A and t are defined by the geometry of the station array;
therefore, the problem is to find the set of scalars (a, b, d).

Since

and R2  "I-MI
2 if - "

squaring these gives:
2 . (. 8)

I

R - 21.A + •.• (9)
2

R'2  - 2-.C + C--C (10)
3

If, in equation (9) we let P*M - a and equation (10) P.c - a, they can be
rewritten using equation (8) as:

2 2 A 1 2
R22 R 1 + (9a)

and 2 2 2

R - R - 28 + 161 (9b)

Solving for a and 8 gives:
S.h- R2 + i*2

2 2  ( 2

2

and 2 2 2
1 2  

(12)
2
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These scalars, a and 8, are quantities which will be used extensively

Sn this method. They are geo~etric!lly the projection of the position vector

onto the base line vectors ! and C respectively. Taking the dot or scalar

product of equation (7) with H gives:

fH-M aM M + b~x + d(' x )'

or

._ aIA12 + bt.A. 
(13)

Dotting equation (7) again with Z gives:

a'- + b6-'C + d (M- x C

or

B a AM + bIlZ 2  (14)

Solving equations (13) and (14) for a and b results in:

la -MI

and

R.R C, l, 2 - E.
b Z;$ OM -aj

The final scalar is found from

f ~ -44x dI A (15)
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I
and

combining (15) and (16) as:

2 2: 2MR, am a+ bO + d21- x

or 2
d2 R1 - aa - b8

Finally
(R1 - a• - bB)½ •

d a- I

Therefore, the expressions for the scalars are:

a 2 ,where '/ - ix 1, (17)

8a ll42 -

b g 
2

and

2
(R - aa - b)½19)

d, w - -

The position vector may now be written as

g - 0(•') A + - 2 "m.)
2 2

(R 2 a - bO)½(M x
+ (20)
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By noting that:

- aj and kx~

Where i, J, k are unit vectors in the M, C, ((M x ) directnonB respectively
and using the expressions for the dot and cross-products, P can be rewritten
as:

87
S.(••- -L os) s2e + • - cose) csc2e^

+ 2. 2 8)2 2 2aOCotOj ~ ~ (1+ (7. +CR- ) + k•• (§)) 21)Cc8

where e is the angle between H and C.

Since the magnitudes of H and C, that is IHI, , and 6 are fixed for
a given station geometry, the only quantities to be recurrently calculated
are a and 8 as given by equations (11) and (12). For the general case the
simplicity of this procedures as compared to the intersecting spheres method
is apparent.

For the special but desirable case that i normal to J, equation (21),
"reduces to:

+ + (R k (21a)

which gives directly, if desired, the Cartesian coordinates in the i, J, k
system as:

and
2 a2

'ITI I-c0



The correlation between these values and those of equations (4), (5b),
and (6) is obvious.

A ..n the general case, the transform to a chosen set of orthogonal. coordinates,
i*, g*, k*, is given by:

i*.i W all, i**j a i.k = a13
A 

AJi a "21' J*.-j =a22' J,.k- , a3

k*.i = a31' k*.j = a3 2, k*-k - a33

i.e.,
3

v*- I AV,, n a 1, 2, 3 (22)

where V are the vector components of ý and V* are Cartesian coordinates
xV y V*, and z a V*. The An• are the ndirection cosines of the
t tan~s iorm. 23n

ERROR ANALYSIS

The error analysis of Method I and Vector Method will be accomplished
using the propagation of error principle which states for a quantity(s) which
is a function of two or more measured quantities, i.e., s - s(p,q,u), the
uncertainty in s, 6s, is:

6a - B(s ))2 (6p) 2 + (s)2 (6q) 2 + (D)2 (6u) 2

where 6p, 6q, and du are the uncertainties in the measured quantities. This
expression assumes a symmetric distribution of the measurement uncertainties,
i.e., positive and negative errors are equally probably in the measured ranges.

Method I

Using equation (4), where x - x(Rl, R2 ), gives for the partial
derivatives:

ax _R 1  3x R
ax e R I D R 2 and the resulting uncertainty in x, 6 x, is:

6x- kR 21(6RI)2 + R•(65R 2 ) 2•.

(t 2)

6X -- C 6)+R(R2 2 2 2Letting t1  R R(6R) + R (6R) this expression will be rewritten as:

e
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* From equation (5), where y y(R 2 , R3 , x) and the resulting partial derivatives

are:
R2 R,:-- ýy a. and "•X = -(e

aR2  haR 3  h ax h
R2 2  +2  R 3  2 2½

gives for the uncertairty in y, 6y m [(R-) 2) + (h-)2(6R3 + h2
(t12)

where again 6x --- giving:

1-2
'y = h9.t 2 3 + t12 (1 - 2(g/e) + (g/e)2]

This appears to be a curious result since if g " 0, 6y t 2 3 + t
(t23)½

but if g u e, Uy h 
h 

'

This result, however, indicates that for minimizing the uncertainty
in any one component, x, y, or z, that two of the stations should be aligned
in that direction. This is also apparent in the subscript change on the value
of R in equation (Sb) from that in equation (5a). Pursuing this philosophy
woul& result in the addition of a fourth station to optimize the uncertainty
of a spatial position. The location of this fourth station would necessarily
be directly above one of the other ground-based stations so that the line
formed by these two would be normal to the plane z - 0, i.e., that formed by

the three ground-based stations. That is, of course, not an absolute requirement
but one to optimize, i.e., minimize the spatial uncertainty.

This argument also implies that you should expect the uncertainty in
the z component to be the largest of the three components when using only
ground-based stations. This will be shown, in general, to be true since:
z - z(R 1 , x, y) from equation (6)

R
3z 1 3z -x 3z a
3R z ax z' T y and

1 2 2 x2 2 y2 2
dz -'.•Ri(sR 1) 2 + ,2(dx) +~y (dy)2%½.

A significant difference in this expression for the uncertainty in z is the
fact that it is inversely dependent on the value of z. Producing the condition
that as z approaches zero (z - 0) the uncertainty in z approaches infinity
(dz *m).
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Minimizing the uncertainty in z would require small values in both
x and y reaching a limit when x - 0, y - 0 and resulting in

S6z a .!(6R1)

but for this condition R- z; therefore, 6z - 6RI. Since this is the smallest
uncertainty that can be obtained in any one component, 6z can obviously range
from this value to the largest and will in general, be greater than 6x or 6y.

Vector Method

Using the uncertainties in a and B the uncertainty in the scalers a, b,
and d c n be eval ated. These then give the uncertainty in the position
vector K, i.e., 63.

From equations (11) and (12), the 6a - t2 and 68 -t The first12 B 13. h* is
scaler A - a(a, 0) and its partial derivatives are:

aa Csc_ and 2 _ a -Cose Csc 2e3a i'i2 aB I• RI•

Since

+ 6f).i - (a + 6a)IAIi.i

or

4-.1 - 6aIi

i.e., the uncertainty in the ith component is:

a 4 6 Cs2 aC 4a
• •i- Csc 8e Cos~e cc~e

Mii --- 4 t 12 + 2 2 1 3] I
IMIIMI IEi

and finally rewritten as:

1-2

. 2.t12 Cos~et3

Sc(7 + CO

There is of course, one very obvious difference in this uncertainty, i.e.,
it is a function of the angles e. This expression and the ones to follow show
the strong dependence of the triad geometry on the resultant accuracy of
spatial position determination or position uncertainty.
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Again the need for noncollinear s~ations, since if 9 - 0°, 6f

It is also apparent that to minimize 6Pi, 0 must be equal to w/2.
Using the same procedure gives for the uncertainty in b,

Csc2e 2 t 1 3  Coss2 t 12½

and since

6f-- 6blCl^'j

the uncertainty in the jth component of • is

.r3 Cos2et2

- Csc2 etl3 + 12)

The final scaler d is a little more complicated since

d - d (Ri, a, 8)

The partial derivatives are:

ad ~ R1
aR 1 T(R• 2- aa - bB)½
ad 1

•a 2Y(R 2 act - b6);

and

ad -b
as 2T(R• 2 aa b b0)½2

Letting T - RI sa- ba, the uncertainty in d may be vrritten as

1 2 2 2

d - [4R2(6R1)2 + a t-12 + b-t 13b

2Vx

Rewriting this equation in terms of a, 8, and 6 with consideration given
to the fact that

di (6d)'I
k
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results in the kth component of to be

S2 2 4 2 2aCose 2 Cos2
kf -2-4R (8 R) 4-+ --_-( -_ + 2. t

k 2, 2 2 1

4 2 2BaCos + 2Cos28)t½+ I 2 2 I~ 1- 1 1 + 1 2 t 3

This expression is greatly simplified if e = r/2. For this desirable
geometry:

2 2
1 R2 2R a t12 16P--•L[ (6 )2 + + -

2T ICI

DISCUSSION

If the methodology of tracking systems move closer to computer controlled
pointing antennas or nonpointing systems implicit in this report, software
methods will become increasingly critical with regard to quality of solu-'on.
The ultimate accuracy of this solution is a function of target position th
respect to triad location and geometry 4-]. Although only three stations
are required for a position solution, in practice many stations would be
deployed. The analytical method presented here permits the selection of
those triads which optimize the accuracy. To illustrate this method, baseline
magnitudes were selected, i.e., ICj and MI'm:, uncertainties in the measured
ranges 6Ri were set, and a spatial point (x, y, z) determined.

The angle 6 between M and C was varied to determine the effect of triad
geometry on accuracy. Figures 2 through 4 are plots of position uncertainty
versus 8, where the units of uncertainty are the same as those of the base
lines. The uncertainties in the x and y components, 6i and 6j respectively,
have the same values in the vector method and may be indicated as either one
on the plots.

Observations and conclusions have been made in the body of this report
where they seemed the most appropriate and will not be repeated.
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SOCIAL SCIENTIST TECHNIQUE

THE CATALYST FOR OBTAINING

OBJECTIVITY FROM SUBJECTIVITY

RONALD L. JOHNSON

US Arny Mobility Equipment Research and

Development Command, Ft. Belvoir, Virginia 22060

ABSTRACT

This study involved statistical efforts by a social scientist in the
field of camouflage development. Statistical techniques were used to trans-
form subjective data into objective results as a basis of statistical infer-
ences. The specific task was to interpret and coordinate subjective, verbal
data generated by 94 pairs of image interpreters viewing aerial film strips
of tactically emplaced military equipment. Target detections were accomplished
on film scaled 1:9,400. Target identification, if a correct detection was
made, was accomplished on film scaled 1:5,000. Visual cues leading to target
detection and identification were tabulated. Using the statistical technique
of minimum contrasts, visual cues for detection and identification were objec-
tively differentiated at the significance level of L =0.025
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1.0 INTRODUCTION
The social science techniques, when applied in a research setting are

becoming more valuable as requirements for quantitative data increase. This
is particularly true when the raw data is subjective in nature. This report
investigated visual cues for detecting and identifying a ground-to-air wea-
pon system. The visual cues were obtained by the social science technique of
the open-ended interview of the test subjects. This paper describes the
method of obtaining this subjective data, and the processing of it into ob-
jective definitive results.

2.0 TEST SITE AND EQUIPMENT

2.1 TEST SITE
The test site was at Fort Lewis, Washington. The exact area was referred

to as the Merill Drop Zone. The drop zone was approximately 1.75 x 0.65 kmnin
size and was located in a temperate climate zone. The existing vegetation was
comprised of grasses, shrubs, and pine trees.

2.2 TEST EQUIPMENT
The test equipment consisted of a single tracked vehicle. It was camouflage

pattern painted in a woodland (US/Europe) fall/winter color scheme consisting
of approximately 45% each Forest Green and Field Drab, and 5% each Sand and
Black colors.

3.0 TEST IMAGERY
The test item was tactically sited and photographed, using 9 inch strip

color, aerial film, at scales of 1:5,000 and 1:9,400 leach with 60% forward
overlap. The 1:9,400 test strip contained 15 frames of imagery; the strip scaled
1:5,000 contained 5 frames. Each frame scaled 1:9,400 covered a ground area
of approximately one square km. The camera used was a ZEiSS RMK-15-23 mounted
in an Aero Commander aircraft under contract to MERADCOM.

4.0 TEST PROCEDURES
The cut, strip imagery were given to ninety-four (94) pairs of operational

image interpreting (If's). The term "operational" is used to indicate the sub-
jects carry an II military occupational specialty code and are assigned in II
positions. All had received service training in interpretation methods and pro-
cedures. The II's were read a briefing in which they were told to look for
possible military equipment on the strip of film scaled 1:9,400. Detailed item
analysis wou]J be accomplished on the film scaled 1:5,000. The social scientist
conducted an in-depth open-ended interview. From each II team, statements
were independently extracted as to the physical features about the surrounding
and the target that enabled detection and identification. Their responses,
known as visual cues, were then tabulated to form a frequency distribution.
These visual cues, subjective in pa~ure, were then statistically analyzed using
the method of minimum contrast. I By employing this method, the visual cues
were objectively ranked (ci=0.025) as to first order, second order, etc. This
data is presented in the next section.

5.0 RESULTS
The refined visual cues for target detection and identification are found in

tables one and two respectively.
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TABLE I

Significant Differences Between Visual Cues For Target Detection.

A B C D E F G H I J K Frequency

A 83

B XX 71

C XX XX 38

D XX XX 37

E XX XX XX XX 21

F XX XX XX XX 12

G XX XX XX XX XX 7

H XX XX XX XX XX XX 2

I XX XX XX XX XX XX 1

J XX XX XX XX XX XX 1

K XX XX XX XX XX XX I

Cell Size 92 (Two I1 teams did not detect the target) xx-Significant a= 0.025.

Key

A-Target appears geometric (rectangular)
B-Target appears lighter in color
C-Track activity seen
D-Target is set in the open
E-Shadow seen
F-Reflection seen
G-Turret seen
H-Target has height
I-Gun barrel seen
J-Target placed next to road
K-Target appears smooth in texture

Conclude that the visual cues are ordered as follows:

First Order - A
Second Order - B
Third Order - C and D
Fourth Order - E and F
Fifth Order - G, H, I, J, anJ K
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TABLE 2

Significant Difference Between Visual Cues for Target Identification.

A B C D E F G H I J K L M N 0 Frequenc,

A 61
B XX 46
C xx 42
D XX 33
E XX XX 32
F XX XX XX 25
G XX XX XX 24
H XX XX XX XX XX 16
I xx xx xx xx xx xx xx 12
J XX XX XX XX XX XX xx 8
K XX XX XX XX XX XX XX 8
L XX XX XX XX XX XX XX XX 5
M XX XX XX XX XX XX XX XX 2
N XX XX XX XX XX XX XX XX XX 2
0 XX XX XX XX XX XX XX XX XX XX XX 1

Cell Size 77 (Fifteen II teams that iiade a correct detection did not identify

the target) xx-Significant a=0.025.

Key

A-Primary lower unit and Environment Control unit (with space between) seen
B-Headlight covers seen
C-Surevillance radar seen
D-Front Part of target boat shaped (semi-pointed)
E-Missile launchers seen
F-Target has a stepped front
G-Target has a length-to-width ratio
H-Tracking radar seen
I-Target has a cluttered turret
J-Target has a height-to-width ratio
K-Turret position is toward the back of the target
L-Sloped front end
M-Target has flat top
N-Driver hatch seen
O-Side edge seen

Conclude that the visual cues are ordered as follows:

First Order- A
Second Order B and C
Third Order - D, E, F, and G
Fourth Order - H and I
Fifth Order - J, K, L, M, N, and 0
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6.0 DISCUSSION
"Tables one and two of the result section have shown how social science

techniques have transferred a hodgepodge of verbal responses into a quantita-
tively ranked ( m-O.025) order of visual cues for target detection and iden-
tification. The camoufleur now has an statistical base from which he can
make scientific decisions as to where to address his efforts The addition
of disrupters and or nets to the test equipment would effect the first order
visual cue for both detection and identification. The processing of the
subje9.tlve data into objective decision making data will save much time and
moneft This will be accomplished by identifying type and position placement
of the;,prototype camouflage.

7.0' SUMMARY
Color aerial imagery containing a ground-to-air military weapon system were

given to 94 pairs of II to determine visual cues for detection and identification.
These subjective, verbal, responses were obtained by a social scientist. Through
the application of social science techniques, the subjective data was transformed
into objective decision making data for camouflage requirements. The application
of social science techniques has therefore served as the catalyst for obtaining
objectivity from subjectivity.
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SOME ASPECTS OF ENGINEERING TIME SERIES ANALYSIS

Victor Solo
Department of StatisticslHarvard University

Cambridge, Massachusetts 02138

0. Introduction

There are a number of characteristics of the type of time series

problems met by civil, mechanical, olcctrical engineers that distinguish

them from say those of econometrics, business. Firstly, there is usually

much more data available - the engineer has great control over the choice

of sampling i;aterval. Secondly, there is often an interest in calculations

perfo.-nizd in real time (rather than at leisure). This is especially so in

adaptive control and forecasting (viz. of electric power demand). Thirdly,

since engineers deal hith physical processes many engineering time series

are distributed (spatially) viz. the determination of thermal conductivity

by measurement cf temperature in a conductin; solid. There has, however,

been recent interest in spatial time series in geography. A fourth area

concerns the engineering interest in transfer function relations between

"input" and "outpu'x" series aF uOpcsd to analyzing the structure of

"noise" processes. Of course, econometrics has a similar interest. Finally,

since classical control t;ieory makes - ;re~t use of spectral methods (gain

ano phase plots) these considerations are always in evidence even in time

domain studies. In hydrology, economics, business time domain methods nave

recently been more popular. The aim of the present discussion is to con-

sider a fundamental problem in time series inalysis, namely the forecasting

problem. In particular, it is pointed out how a very efficient algorithm

(known in the control engineering literature) for computing exact finite

data linear forecasts for an ARMA time series model has been passed by in

the statistical times series literature. This algorithm also gives an

efficient method for computing the exact likelihood. .__
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1. The Linear Least Squares Filter

Consider the estimation of one process x(t) from measurements on

another related process y(t) by measurements at times tl, ... S tN giving

Y(t1 ), ... ,y(tN) which we collect into a vector y or Y. Also write y(t 1 ) = "

t= x(t). We look at linear estimates of the form

A N
Xt H " ?i

H~ .!
The linear least squares filter (l.l.s.f.) chooses Ht to ensure

E(xt- )T (x-Xt) is minimized. This best estimate is defined by the

orthogonality condition

E~x x = 0, S = 1, ... ,N

Proof. Let xt be any other linear estimate. Then

E(x •t - t T = E 11 t -At+ At 'XtII

2 2 *2 T^Elxt'- t 112 + E x*- t11 + 2E(xt - t) (-t' Y "

The third term vanishes by orthogonality. Thus, the mean square error
* A

of xt is larger than that of xt,

Remark. If we allow nonlinear functions of the past then !t = E(xt2Z) so

we often write the linear estimate as

•t = E(x tjý)

a wide sense conditional expectation. (Note E(xtly) is defined too by an

orthogonality.) 'In-fact, xt - E(xtly) is orthogonal to any linear or non-

linear combination of the past.
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We can apply the orthogonality condition to solve our problem thus,
substituting for xt implies

N

E(xt - HtiiYs H 0, s = N, N

or

E(xty') -•.tE(y') a 0

or

H E(xtY')E(yy') "l

Thus
^t ( tIZ) = E(xty')E(yy') -y

The problem with this form of the solution is that it involves a matrix

inversion so we are lead to a second approach. First process the data y

to whiten it i.e. uncorrelate it then the inversion is easy, since the

matrix is diagonal.

We perform a Cholesky factorization of E(yy') = UDUT where U is upper

diagunal with I's on the leading diagonal. D is block diagonal. Consider

Then

E(vvT) = -1 UDUT U"T1  D

i.e. E(,j T 0, 1 j, i, j = 1, ... ,N i.e. the vi sequence is a white

sequence. Since U- is lower triangular the v are linearly, causally,

invertibly related to the yi. The vi is called the linear inovations

sequence.
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Because of the equivalence between v, y the orthogonality condition

can be rewritten

E( -xt)v 0, S = is ... %N
-t-t -S

Then as before

!t EE(xt, )E(vvT)lV

or

N 1
xt .E(x vt)R i V.-. 1 --

also

xtIN =1tlNl + E(XtvN)RN YN

Taking variances gives

EIxt'xtINII2 =tIN PtIN-l - E(XtyN)RN E(vNXt)

: Remark.
A

" YN! - ŽNJN-l

E(YN - (YM-•N))Vs = E(v Ns)~ ~ 0, s = I, ... ,N-.

It follows then by the uniqueness of vs that y N - N = YNIN-I"

To complete the algorithm we need recursive formulae for the Cholesky

factoring. Now

t-I
.t !t - t t-l !t - E(Ytvs)Rs vst V

so

t-l
E(Ym+lvt) E(Vm.iYt) -Y E(Ym+lvs)R E(vsYt), t =2, ... ,m+l

E(Ym+1vl) = E(Ym+Yl)
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Al so,
Rm = E(vm'm) = lm~m)

mmE(Jm v E(Y v)M

We will return to this algorithm below.

2. Relation to Wiener Filtering

Take Mi) xt t jointly stationary (so ti are equispaced).

(ii) Suppose an "infinite past" of Y data is available. We want

SkJ-. = E(Xk ykykl1 ... ). Again we first whiten the data Yk" Suopose Yk

has spectrum

Oyy(Z) = I E(YkYo)ZR
-CO

= Z{E(YkYo)}

Here Z{.} denotes the Z transform. If yy(Z) is nonsingular on IZI = 1

it has a factoring Oyy(Z) = W(Z)W(Z 1 ) where W(Z), W-I(Z) are analytic

on IZI Ž 1 and lim W(Z) < w, W(Z) has no Z"1 powers. (This is an "infinite"
Z-*Q

analogue of the finite data Cholesky factor.)

Consider now vk = W(z)Yk. Then

Z{E(vkvO)} = JZ)

- Z W'I(z)E(Ykvo)wl(Zl)zk
-COI

W1-1
- (z- ) I .

So Vk is a white noise sequence of variance I and Ak are causally linearly

equivalent to Yk" So we must be able to calculate Xkjk.1 as
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I

xkjk.I = k(Xkkvk k 1 ... 1

= E(Xkvk)vk + E(xkVk_1)vk.I.

= E(xovo)vk ' E(xov 1)vk.l +

D jZ-jv k = O+(Z'l.-0

where Dj= E(xov~j)

I D zJ • I D jz+ DzJ
0 ~-1

D(Z-I) = ~ ~ = D.zj + 0Z3

= D+(Z) + D (Z)+

Thus the transform from Ak to xk~k-I is D+(Z'). So the transform linking

Yk to xk-kl is

XkJk~l = D+(Z-1 ) D+Zlx k k- = + )v k = +( - )W-l (Z)yk

Finally observe

D(Z) = I E(x 0V- )Z'J

= E(XoW M (z)y .)Z

Thus

kAk- (Z): + ( Yk

which is the well known formula for the Wiener filter.
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* 3. Exact Likelihoods Via the Linear Least Squares Filter

Under a Gaussian assumption on the data y the likelihood or joint

* density of the y data is

in L = constant I 1 Tl

2 where R =E T

=constant- • In 2 _ 1 V2 2a 2

This follows since R = UOUT implies

yTR-1y = yTu-T0-1u-ly = VTD-1V

and
* =

1

Alternatively, the second expression follows by writing L as an iterated

conditional density.

So to get the exact likelihod we need only generate the vI. Consider

this process for the ARMA model

Yn+ aIYn-I + "' + anaYn-na = Cn + clcnzl + ... + Cna n-na

with initial conditions chosen to ensure y is stationary. Observe

r- 1

E(YtYn)=- asE(Yt-sYn) t an + r r na+

Next
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•- However,
T a Tn-Yn for some a-Tn (2)

!-so if t_ T + r so that t >_n + r then using (2) in (1) will give :

r-1
E(Yo0 V T) =- asE(Ytvs ),. t _. r + r (3)

So write

^t-r-I t-I
Ytjt-I E(Yt VT )R T v + X E(Y t VT)R TI V

1 T 1

t-r by (3)fe(

t-r-I r-I -1 t-I
a- aE(Yt V M)R'V + •.E(YtV )RlvT

r s tn t n (

Sr-I t-r-I t-I I

C(OT y -( 2: a5 (t ), + I . 'Y )R; (3)

a s EYtS1 -T Ts t-'

t-t-rytj~ 2: EytvR + E( Y V )RR1 v

-t-I t -T T

'--'- "~~- 2: a[ : aE(Yt sv))R' + L [EYtVT)K+•aEY-v)R

where wt - Yt + a• Yt-s ' Also, RT - E(vj V) - E(Y Tv We can generate too,

a finite recurs1ve algorithm for E(WT1). For details (and an alternate

derivation of the above filter) see Ka+la2h and AEsnes (1974). This

U--

,ii mV• • j- F r - 1
reference also discusses the p step ahead forecasts, p > 1.
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4. Exact Likelihood for Continuous Discrete Models

Suppose

r + + a + a s -w+ ai + a20

. where s ds/dt etc., s s(t) etc., y s + v and w, v are "white"

noises and y is sampled at times tP l...,trt The log likelihood is

as before

log likelihood = const. - In V - g i/N

To generate the vI observe

1. S(tIN) - s(t)N-1) + E(s(t)vN)RN VN' So

N - + E(s(tN)vN)R NvN"
SNIN ' 5NJN-l NN

2. 1 i(tJN-l) + aI ' (tIN-1) + a--I)

N-1
SE[(N+a 1 ;+a svkR 1

=0 t N-1< t< tN

with initial condition Sd N-IN1

3. E(s(t)vN) - Es(t)[(y(tN) - s(tIN-1)3

- E[s(t)s(tN)] - P(t, tNiN- 1)

P(t, t NIN- 1) - E[(tlN- I)S(tNIN- 5 )]
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4. P(NIN) = P(tN, tNIN)
N'R•

P(NIN-l) - E(S(N)vN) R 1 E(VNSN)

5. Derive a differential equation for P(t,tIN-l) for tN-1 t<t N by

differentiating
A 2 N-1

P(t,tIN-1) E s(tlN-l) 2 E(s(t) R E(NS(t))
0

to yield

d<S+ aI LP+ a2P = 0, tN_ <tN-

Further details of this procedure will be discussed by the author

elsewhere; however, compare this with the usual approach where

(i) data must be equispaced;

(ii) an equivalent discrete model is formed and a discrete likelihood

computed so that the original parameters occur very nonlinearly.

5. Conclusion

The use of a recursive form of the linear least squares filter for

estimating one time series from another has been illustrated in two cases.

This idea has promising use in the statistical solution of inverse problems

where in the signal plus noise model the signal is the solution to an

integral equation.
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aspects of these models and our contributions to the recent advances in
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1. INTRODUCTION

A stress-strength model of reliability is relevant for the situation

where random environmental stresses tend to interfere with the functioning of

a device. Interest in these models abound in numerous disciplines of engineering

and life sciences. In this article, we present an overview of the principal

aspects of these models and our contributions to the recent advances in

statistical analyses of the stress and strength data.

Most engineered products must operate in environments which are not

controlled and the possibility of random shocks usually prohibits any strictly

deterministic formulation of the stresses. Stress-strength models use

random variables to represent both

(i) the variation in the ability (strength) to perform

and

(ii) the variation in the stress imposed by the

environment.

Let

X = maximum stress

Y = strength of unit.

In this context, we define Reliability (R) = the probability that the unit

performs its task satisfactorily, that is, the unit is strong enough to

overcome the stress.

R = P[Strength , stress) = P[Y>X]

When X and Y are independent,

R PyX1 j F(y)dG(y) = 1 - G(x)dF(x) (1.1)

532



where F and G are the continuous cumulative distribution functions (cdf's)

of X and Y, respectively.

The following examples help to delineate the diversity of applications.

Example 1. [Rocket engines) Let X represent the maximum chamber

pressure generated by ignition of a solid propellant, and Y be the strength of

the rocket chamber. Then R is 'the probability of a successful firing of the

engine.

Example 2. [Comparing two treatments] A standard design for the

comparison of two drugs is to assign Drug A to one group of subjects and

Drug B to another group. Denote by X and Y the remission times with

Drug A and B, respectively. Inferences about R = P(Y>X] based on the

remission times data X1,X2, .... Xn and Y,Y 2,...,Y m, are of primary

interest to the experimenter. Although the name 'stress-strength' is not

appropriate in the present context, our target of inference is the parameter

R which has the same structure as in Example 1.

Example 3. (Threshold response model) A unit, say a receptor in the

human eye, operates only if it is stimulated by a source whose random magnitode,

Y, is greater than a (random) lower threshold for the unit. Here

P[Y>X) - P[unit operates]

is again of the form described above in stress-strength context.

53-
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2. ESTIMATION OF RELIABILITY P[Y)>X

We briefly review estimation of R when samples are available from

both the strength and stress distributions. Specifically, let XX2,...,Xn

be a random sample from F independent of Y1IY 2 '""Y m' a random sample

from G.

2.1 Nonparametric approach

A number of authors Birnbaum (1956) Birnbaum and McCarty (1958)

Owen, Craswell and Hansen (1964) have proposed nonparametric estimators of

R P[Y>X3. An estimator, based on the count is

U # pairs (XiYj) with Yj>Xi,

Sand R F F(y)dG (Y) (2.1)

where Fn, Gm are the empirical cdf's from the ains dY Is respectively.

Approximate confidence bounds can be obtained from the large sample distribution

of R (see also Govindarajulu (1968), Sen (1967)).

A difficulty with the nonparametric approach

With small or even moderate sample sizes, high reliability cannot be

verified. For instances, with m = n = 11, if the strength observations were al

larger than the stresses, we obtain .77 < R with confidence .95. The same

confidence bound is obtained when the strength measurements are only moderately

larger than the stresses (Figure l(a)) as when they are considerably larger

(Figure 1(b)). The nonparametric method fails to discriminate between the

two situations.
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Figure I. Two situations giving identical confidence bounds with the
nonparametric method.

5
I 535



2.2 Parametric approaches

When X is N(wl,o ) and Y is N(2,

~(d2'02)

2R =P2Y>x: 2 (2.2)

(1 ~2

where . denotes the cdf of N(O,l).- Church and Harris (1970) obtain large

sample confidence bounds when the parameters of the stress distribution are known.

(see also Mazumdar (1970)).

When a 12 = 022 2 confidence bounds can be obtained from the non-central

t-distribution of

(m-l)s1 2 + (n-l)s 2  112<'m +n) m + n -2

as in Owen, Craswell, and Hansen (1964).

Difficult)y with the parametric model

If a small fraction of the population of the units contain major defects

of material or workmanship, a small or moderate sample of strengths will not

show these 'rare' sources of failure. This is illustrated in Figure 2.

STRENGTH
DISTRIBUTION
FOR MOST

STRESS SP'ECIMENS

SMALL FRACTION

OF VERY WEAK

SPECIMENS

Figure 2. A strength distribution that is a mixture of two failure sources.

536



r7" Ir 
-- 7 ~ ~ ~ -- -.-

In this situation, use of an assumed parametric form for the stress

distribution will, typically, lead to estimates of P[Y>X3 which are

incorrectly very high.

Even without such extreme departures from the postulated models, tail

areas remnain very difficult to estimate. The choice between normal,

Weibull or lognormal tails can change the estimated reliability by several

orders of magnitude (when R is very high).

2.3 Bayesian approach

Enis and Geisser (1971) consider estimation of P[Y>X] when X, Y

t are negative exponential, and also in several normal theory situations.

3. STRESS-STRENGTH MODELS WITH COVARIATES

Recently, we have encountered stress-strength analysis where covariates

play an important role.

Example 4. A 2 x 4 used in the frame of a house has strength Y

which can be obtained only by destructive testing. Yet, the stiffness z

is easily measured.

The data of Figure 3 suggest that the strength

Y = a + 2z + e2

2

where e2 is N(,o 2 2). For a specimen of stiffness z.

P[Y>XIZ] = O( 2+82 Z-1 I

(01 2 21
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Examp 5. Let Y be the strength (in p.s.i.) of a glass fiber

reinforced rocket motor case, and let X denote the operating pressure.

The data of Figure 4 suggest that the stress depends on ambient temperature

z according to a linear model

X = aI + lz + e1

where eI is N(0, 1 2).

For a given temperature z,

112 -1 - (3.2)
p[Y>XIz] - 2 + 2 1/2

( 2

DOUGLAS-FIR 2x4

e7
7 r* *** *

/

7 ** 4

C1S. J6

0 2

ST I FF;,.'ESS

Figure 3. Stiffness of wood as a covariate.
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Figure 4. Ambient temperate as a covariate
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xir�.�~t.,I_ ca:rison of Drug A and Drug b when age is a ccvariate:

X reik:isAiun time with Drug A

y rhi'sl time with Drug B

: Z
' t a s t r u c t u r - i- :

[-_IX , A. jjm"

"11- - "Drug A

1 f

!Yl Y Y

1 ' •ln Drug B

6- ZL 
r 

!)Z 
12-1

-can be used to -imate the linear regri.sions A

E(X',7) + z and E(Yz) I 2 + e z

;:or a new subject of age z, we may wish to provide information •i.

51
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In Example 6, if we assume that X and Y are independent normal random

variables having the same variance a , we obtain the expression

: : Y~-X-(a2-al)( B)z -(a2-al)-(S -8l)z
i ' ~ P[Y>XIz] P(, J' > ' ]

€((a 2-cx1 )+(82-BlI)z
2 ) (3.3)

The resulting reliability is similar in form to the previous cases.

Allowing both X and Y to depend on the covariate does not lead to further

complexities.

Under the assumptions

Xjz ~ N(a1 + 8 z a 2

VYZ 2 - N(c2 + 62z2 , 02)

We are interested in making inferences about the reliability

'•Y-a2-'2z2 ca 2+ zI- "B2 z2]
(P[Y>X zI'Z 2] pr 2[ • > " 1+g

at z1 ,z 2 .

Classical Approach

Confidence bounds for R(zo). In order to determine a lower confidence

bound for R(zO), we note that V - - (z0 - ) is normally distributed with

mean = w2-I-BIN(z-Z) and standard deviation ocO, where

2
C2 

=1_1_(z-i

c .I + _I + 0Z -)

0 m n -2
* E(z Jz
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Also, (m+n-3)s2 is a 02Xm~n3 and is independent of A(Z _-

Consequently.

i - X - g(Zo-i)
F- S 0S. sc0

I0

has a non-central t-distribution witth m+n-3 d.f. and the noncentrality

parameter

Z V2 - cx" (zo-i)

A lower 95% confidence bound, n, is obtained by solving F(to) ( .95.
11 obs

Consequently, a

IA S95% lower bound for r•Zo 0 PLY>XlZo0] is

! R(z0 ) = C(_//21/2c ) ( (3.4)

Refer to the data of Example 5. For temperature z0 = 30', tobs

12.487, and a computer calculation gives a = 10.02, and

R_(30) - t(2.02) = .978.

Inverse problem

We want a confidence bound on z for which R(z) >.99. This time we

consider

T(p) 2

4n )2
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which is distributed as a non-central t with m+n-3 d.f. and the non-

centrality parameter

(2" -QS(p-Z))fo ]

4. + ]1/2

m n

The numerator of Yn is constrained by the relation

(- ) .99.

The confidence region for p consists of all values of p for

which Ho0:p s pO" would not be rejected in favor of H1 :P > PO"

The 95% upper bound for p is the largest A satisfying

T(ý) t t.o5(a)

or

Fý(TGWobs)) z .05

For the data of Example 5, a computer calculation gives

p - 46.8.

4. STRESS-STRENGTH MODELS FOR SYSTEM RELIABILITY

The formulation of a stress-strength reliability model has been extended

to multicomponent systems and several problems of statistical inferences on

the system reliability are addressed in Bhattacharyya and Johnson (1974,

1975, 1977). Here we only include a brief description of the models and

the approach to inferences. Details of the technical results are available
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in the cited references.

Model 1

The primary extension of a single component stress-strength model was

focused on an s out of k system of identical components. This is a

S•system of k components whose strengths Y "'"Yk are independent and

identically distributed (lid) random variables with a continuous cdf G(x).

Thesystem ofukccopentsfuly worse strengts mission if areasdeendt snIs

The system successfully perfor. s Its mission if at least s (1 s s s k)

components are operative.

First we consider the situation where all k components of the system

encounter a common random stress X whose cdf is denoted by F(x). The

reliability Rsk of this system is then given by

Rsk = P(at least s of Yl"'. Y k > X]

k to i k-.
" I (k) [1-G(x)3 G(x)dF(x)

1 - J BEG(x))dF(x) (4.1)

where B is the beta distribution with pdf muk-S(1-u)sl

A parametric approach. Assuming the exponential distributions

F(x) - exp (- 1X)

G(x) 1 1 - exp (-e 2 x) , x e1le 2

the system reliability is given by

= B(s+),,k-s+!) k! (4.2)

1- Rsk B(s,k-s+) s I k(4.

54(X4J )
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The uniformly minimum variance unbiased (UMVU) estimator of Rsk and exact

confidence bounds are derived in Bhattacharyya and Johnson (1974). This

work also includes a study of the bias and mean squared error of the maximum

likelihood estimator.
r:

Nonparametric estimation. Let X1 ... Ix and Y denote
1 2

independent random samples from F and G, respectively. The corresponding

empirical cdf's are denoted by

I; x)=#Xi 5 x ()=#YJ 5 x

-n n2

A plausible estimator R of Rsk can then be obtained by replacing F

and G in (4.1) by F n and G n respectively. After some simplifications,n1 n29

this leads to

n - (4.3)
I~ I~LZ T2 n2

where S(.) < (n are the ordered ranks of the Y-values in the

combined sample. Employing the idea of a generalized U-statistic, the UMVU

estimator R of Rs,k is derived, and it is given by

I n2-s+l t- n-•
R = n2 I~ .+(~)s1(()• (4.4)

n ( 2~ Lzk-s+l k-s S-1 ,Il k)

The statistical properties of these estimators, and large sample confidence

intervals for the system reliability, R, are explored in Bhattacharyya and

Johnson (1974, )975, 1977).
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A few other models, considered in Bhattacharyya and Johnson (1974)

bare mention.

Model 2. s out of k system with standbys.

Operating.

kI independent components with strength distribution GI

Standbys.

k2  k - kI independent components with strength distribution G2

A single stress X is applied to all components.

Model 3. Subsystems with independent stresses.

SubsysteM q.

k independent components with strength distribution G
q q

Stress with cdf Fq is applied to each component.

Subsystem operates if sq out of kq components operate.

Model 4. [Binomial Counts) Here we consider the structure of Model I with

the variation that the test conditions do not permit independent sets of

strength and stress measurements. Rather, the prototype components are

tested under random stress conditions that prevail, and all that is recorded
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are zip =, ... n where

ifcomponent i functions
Iz { , 01 if

:, if component i fails.

In the case of a system vith c subsysten.s where each subsystem

conforms to the structure of a single-component stress-strength model, the

problem reduces to one of estimating the system reliability from the binomial

counts. See Myhre and Saunders (1968), Madansky (1965) and Easterling (1972)

for discussions about inference methods. However, certain complications arise

when groups of components are simultaneously tested, each under a random

stress, and the group size is different from the system (or subsystem) size.

In the context of Model 1, Bhattacharyya (1977) discusses nonparametric

estimation of Rsk when groups of m component- are tested under

independent stresses and only the failure count is recorded for each group.
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ON THE INTERPOLATION OF GRAVITY ANOMALIES AND
DEFLECTIONS OF THE VERTICAL IN MOUNTAINOUS TERRAIN

H. Raussus von Luetzow
U.S. Army Topographic Laboratories

Fort Belvoir, Virginia 22060

ABSTRACT: The paper first addresses the interpolation of gravity anomalies
in mountainous terrain, to be represented as the sum of a "signal" variable
with a quasi-stationary estimation structure and a computable "noise" variable
without a stationary character. It then develops the particular solution of the
boundary value problem of physical geodesy which permits a similar representation
of deflections of the vertical and draws some conclusions concerning the
inapplicability of Molodensky's series approach and of the collocation method
for the accurate determination of vertical deflections from unmodified gravity
anomalies in mountainous terrain. Thereafter, it discusses the estimation of
signal-type deflections of the vertical by means of spatial covariance functions,
i.e., by a linear regression technique called statistical collocation in physical
geodesy, and provides first order expansions of planar covariance functions.

1. INTRODUCTION. Deflection of the vertical components ý and n play a

role in the adjustment of geodetic networks, in the computation of height anomaly

differences, and in the transformation of local coordinates into terrestrial

coordinates. Short of a three-dimensional solution of the geodetic boundary value

problem under consideration of mountainous terrain, deflection components and gravity

anomalies Ag are also desirable for the numerical upward continuation of the first

* order derivatives of the anomalous gravity potential. The interpolation or

estimation of gravity vector components in flat terrain is not inherently difficult.

In mountainous terrain, gravity anomalies hg are profitably modified to Faye

anomalies AgF by means of terrain corrections C, to be followed by a transformation

r
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to Bouguer anomalies aga which permit an approximate two-dimensional interpolation.

Isostatic gravity anomalies &gi, to be corrected by the indirect effect, would

require a three-dimensional interpolation technique in the case of high accuracy. The

problem of deflection estimation has been discussed by Heiskanen and Moritz [1967] ar

othersincluding the method by M1olodensky et ai. 11962) for the calculation of deflec

differences in flat terrain, and the difficulty to interpolate t, ri in rough moun-

tainous terrain. Baussus von Luetzow 11980] addressed the optimal densification

of deflections of the vertical in flat terrain with and without consideration of

gravity anomalies and extended Molodensky's approach. Badekas and Mueller (1968]

utilized Eotvos torsion balance measurement together with appropriate terrain

corrections for the interpolation of vertical deflections, a time-consuming procedur(

and soon to be replaced by the employment of moving base gravity gradiometers.

Regardless of these efforts, an effective t.,n-estimation method applicable in mounta

terrain will still be valuable and may also aid deflection estimation under

consideration of a series of discrete inertial measurements. Section 2 of this

study addresses the interpolation of gravity anomalies in mountainous terrain. In

section 3, the appropriate solution of the boundary value problem for vertical

deflections is presented and reformulated for optimal deflection estimation o f-

"I"signal" components of & and n and computation of topographic "noise" terms. The

estimation of signal-type components by means of spatial collocation and the

development of first order approximations of spatial covariance functions is the

subject of section 4.

2. INTERPOLATION OF GRAVITY ANOMALIES. It is well known that an accurate

analytical representation of free-air anomalies in pronounced mountainous terrain

can only be achieved by a polynomial of high degree by means of Ag-data available in

a network of high resolution. As a consequence, satisfactory linear interpolation

requires small mesh sizes &x, Ay. The following modified anomalies have been
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useful for geodetic applications and the purpose of Interpolation:

AgF - Ag + C (1)

where C is the terrain correction, is called Faye anomaly.

36 T
Ags F gF " bh +÷3 (2)

2R

is the modified Bouguer or complete topographic anomaly where b - 0.112 Mgalm"1

is the Bouguer gradient, h is the elevation of terrain, 5T is the potential

of topographic masses, and R - 6371 Kin is the earth's mean radius.

Ag1 - AgB + Ci + a6c , Ag + C - bh + Ci + asc + r (3)

is the isostatic anomaly valid for the compensated geoid with a a 0.3086 mgal m-1 ,

6c as the vertical separation between geoid and cogeoid, and r as a random error.

Equation (3) may be further written as

Ag a Agj + Ct + r (4)

where Ct represents the aggregate of terms computable from the known topography.

In a more general form, also applicable to the optimal estimation of vertical

deflections, equation (4) is reformulated as

m = s + n + r (5)

In this equation, m is a "message" variable, s is a ".signal" variable, n is

deterministic or computable "noise," and r is random-type noise.

Under consideration of a linear signal estimation structure, a signal can

then be optimally estimated as

Se - L(mi - nI - rI) (6)

where L denotes a linear operator and the subscripts e and I refer to the
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estimation point Pe and measurement points Pi, respectively. The optimal

measurement at Pe results as

me + ne + re L(mi - n1) + re - L(rt) + ne (7)
e

The estimation error is

e(me) = e(se) + e[re L(ri)] (8)

The corresponding estimation error resulting from the utilization of topographically

unmodified measurements mI is

e(me) = se - L(si) + re - L(ri) + ne - L(ni) (

= e(se) + etre - L(ri)] + ne - L(ni)

Comparison of equation (9) with equation (8) shows that the non-optimal interpolatio

process is associated with a "topographic" estimation error ne - L(ni) which

becomes in general intolerable in moderate to rough mountainous terrain and thus

induces the requirement of a fine mesh data grid.

The interpolation of isostatic anomalies by means of spatial collocation will

be treated in conjunction with the interpolation of isostatic deflections of the

vertical in section 4.

3. FORMULATION OF A VERTICAL DEFLECTION SOLUTION SUITABLE FOR OPTIMAL

INTERPOLATION. Gravimetric-topographic solutions for the anomalous gravity potentia"

and deflections of the vertical which inherently permit a "signal-noise" separation

according to equation (5) have been established by Pellinen [1969), Moritz [19691 ,

and Baussus von Luetzow [1971]. The latter emphasized that these essentially

identical solutions are almost equivalent to those of Molodensky et al. 419621 and Br

[ 1964), but are less data dependent, more direct from the computational view, and

more advantageous for the utilization of artificial satellite data. The notations tc
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be used are the following:

T.y height anomaly

T anomalous gravity potential

normal gravity

8 -cprime vertical deflection• ' = "ax )h-const.

n=(•y)husco•neridian vertical deflection

h hp elevation of terrain referring to moving point P

hA elevation of terrain referring to fixed computation
point A

81= arc northern terrain inclination
ax

82 arc 3h eastern terrain inclination
2 ay3

derivatives taken along the local horizon in a
5Y northern and eastern direction

G global mean gravity

C azimuth angle counted clockwise from north

angle between the radius vectors `rA and •p
originating at the earth's spherical center

SW) Stokes' function

8- 3g1
k 6.67.10 cm g'sec 2  gravitational constant

p 2.67 g cm 3  standard density

R 6371 Km earth's mean radius

1 10 2R sin see Figure 1

(A+ r2- 2Arp cos see Figure 1

a unit sphere (full solid angle)

g measured gravity

Ag g-y gravity anomaly

C terrain correction

AgF Ag + C Faye anomaly
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b = 0.112 mgal m-1 Bouguer gradient

6T potential of topographic masses

LgB = AgF - bh + "21 modified Bouguer or complete topographic
2R anomaly

The geometry involving hA, h=hp, o, R, 10, and 1 is evident from Figure 1 below.

A

1 10 1?
h

R t

Figure 1

The established first order solution for the deflection components is

- f C' 4  )Cosa dS (4) do&~ +~ (101tnx
71 471 - gr 5g, + G, sinal dip 66i G 06B2f10

where

= ~ ~ 1 +- h hf ni.±~. h h 2Lj~Ao 1 (T7 h hA (11

JJ'-'oj-f T- In- do (12 I VfoA)
a-

G, Rf~ L2 Ci --g~ 1 3C5 lin i do (13

2 ... .1 iu

6~i do J(3l ~ in

ai
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Will Ik

ii It should be noted that 6g is in general very small and that the computation

of 6g,6E, and 6n requires only integrations over a1, 4i4. It has further to
;-I

be emphasized that, according to Baarda (1979), the inclination angles B1 and

02 should not exceed 700.

Equation (10) Is now reformulated under consideration of
6gF L9 * (g, " a) A" + 6g2  (14)

6gB= I + (&gB - 6) - + 663  (15)

In these equations, ag is a signal variable, profitably the isostatic anomaly

defined in equation (3). In comparison with 6g2 , 6 3̂ is a relatively smooth

topographic quantity.

The substitutions (14) and (15) transform equation (10) into

I(4G fA + G 1 (,1)] {Csina dSý G ~tn B

R $g G(&)) CosCVS dO) da + {6$ C -5.~ G. 1 SU) ~tn~ij (16)+ ,ff [691 + 692 + G, (6g03 Isinal dj, I•) tn$2)

The first two term3 of equation (16), involving the anomaly 4g, represent the

"signal" components of c and n. The following three terms constitute computable

topographic "noise." Permitting for random-type errors rr. and r., equation (16)

can be written in analogy with equations (4) and (5) as

+ ý1srý + (17)|6no) r

The numerical determination of the three topographic terms of equation (16)

Is a complex task, which can, however, be accomplished without inherent

difficulties by means of high-speed computers. In this respect, the integration
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area relating to the first topographic term can be considerably restricted. It

appears that the last two topographic terms are particularly subject to rapid

changes in mountainous terrain. Accurate interpolation is further favored if

given and estimated deflections refer to points associated with small terrain

. ,inclinations.

- i In accordance with Moritz [1969,]. the second order correction for the

height anomaiy is

= ff G2(6ý + 6ý) S(41)d&- f (Aý + 63) dhh a2  (84?f ff 1

where

Gf =-. 1 GI(Ag + 69 3 )do + (,• + 6g 3 ) tn2m (19)

"0''

Here, sm represents the maximal terrain inclination.

The second order deflection corrections are then

601(1(AO R ff 26 Cosa d ) dcyI 4ii Mi + sinci dip

3R3 g -I- sn Cosa c dl do (20)

Designating the integral terms of equation (20) as second order topographic

corrections ,4 t and 6n(2), equation (17) assumes the modified form

+ tt21

(2) :() + + {6n,2) + r(2) (21)
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Higher order topographic correction terms are not warranted because

of a decreasing convergence radius in connection with higher derivatives, the

assumption of a standard density or density uncertainties, respectively, and

imperfect isostatic equilibrium. The structure of equation (21) clearly exhibits

the fact that a highly accurate computation of E(2) and n(2) cannot be achieved

by the exclusive utilization of free'air anomalies &g. For the same reason, iterative

solutions of the integral equations for generalized surface densities by Molodensky

et al. [19621 and Brovar [1964] and the series solution by Molodensky et al. 11962]

in general do not converge in mountainous terrain. The latter permits for

auxiliary boundary surfaces under utilization of a shrinking parameter k §10 and thus

implies the possibility of analytical continuation with p=O. For the same reason,

collocation solutions would only satisfactorily apply with respect to signal variables

4 and ;. The analytical upward oontinuationof the first derivatives.af the anomalous

Iravity potential in mountainous terrain would require a supplemental approach.

4. SIGNAL ESTIMATION BY STATISTICAL COLLOCATION AND FIRST ORDER EXPANSIONS

OF PLANAR COVARIANCE FUNCTIONS. As indicated by Baussus von Luetzow (1980],

deflection differences in flat terrain may be advantageously determined by a

combination of statistical collocation and Vening l4einesz formulae provided

gravity anomalies are also available in sufficient density within a limited

region. Four point deflection estimation errors with mesh sizes Ax = 5 km,

8 km, and 24 km were found to be, respectively, of the order 0.1 arcsec, 0.2

arcsec, and 1.0 arcsec in the case of estimators free of errors. Astrogeodetically

determined deflections are, however, presently associated with errors of the

order of 0.25 arc~ec. In accordance herewith, it is advantageous to employ a

relatively great number of estimators if this is feasible.

The signal variable to be estimated and representing either C or n may be
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x, and the estimators may be written x1 +68 with di as a correlated measurement

error independent of x1 . Under the assumption of an existing signal and noise

covariance structure the following linear regression equation can be formulated:

E0 aai(ý + s)aA 16Xi +4 d (22)

It is then in matrix form,'. with bars,itdicating covariances,

uekk At(Xixk + Atik A Nik 4k 1, 2,..., n (23)

The solution for the regression coefficient matrix follows as

AAj ie - K NjK_1 (24)

In the case of given astrogeodetic vertical deflections, 6, may be composed

of astrogeodetic errors with a variance (0.25 arcsec)2 and a correlated error

partially caused by imperfect isostatic equilibrium.

With respect to the basis for the statistical collocation approach in

physical geodesy, reference is made to 9jerhammar 119731, Grafarend (1973],

Krarup [1969), Lauritzen [1971), Moritz [1970], and Tscherning [1973). Of

significance is that the spatial covariance function for the disturbing gravity

potential has to satisfy Laplace's equation. Baussus von Luetzow (1973)

emphasized the necessity to treat c-c as a correlated random variable where t is

a deterministic development of r in spherical harmonics of at least degree and

order 15. In accordance herewith, the requirement of homogeneity prescribes and

at least permits in practice a restriction to the planar approach in physical

geodesy. Accordingly, 1 -Ag, , and -T are supposed to satisfy Laplace's

cquation. It is realized that the convenient requirements of homogeneity

and quasi-flat terrain are only approximately satisfied.
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Moritz (1976] and Nash and Jordan (1978] established specific T-covarlance

functions which can be expanded into space in a closed form. As has been

shown by the latter authors, the spatial covariance function is

S-•,(;+z2)(25)

4TT(r, zi, z2 ) = f pF(p)e Jo(rp)dp

F(p) = f rtTT(r)Jo(epydr 
(26)

0

In equations (25) and (26), Jo is the zero-order Bessel function, r is the

variable planar distance, z1 and Z2 are the elevations of two points, and

OTT (r) is the planar T - covariance function.

The spatial vertical deflection covariances may be derived from

equation (25) in the form

(r, zi,z2) a
(yiy2) j 2 DTT(r, zi, z2 ) (27)

SCnn(rz1,z 2 )

where YN1 Y(z1 ),Y2 a Y(z2 )-

For OT- functions which permit the derivation of realistic vertical deflection

covariance functions, the Hankel transforms (26) and (25) cannot be evaluated

In closed form. As an example, Jordan's (19721 third-order Markov modPl

r

4TT(r) = var T (1 D (28)

leads to the hypergeometric function when introduced in equation (26). Thereafter,

OTT(rl Z1, X2) only can be obtained by an extremely lengthy numerical integration.

For this reason, It appears to be advantageous to develop first order approximations

for spatial vertical deflection covarlance functions under consideration of Jordan's

(19721 planar results. In this respect it has to be emphasized that Jordan
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"Interchanged the conventional partial differentiations k'*

z

12

Figure 2

Under consideration of Figure 2, it is to the first order

("-) z(29)

az 1 2 z e 4 7 e)Z2

It is then, to the first order,

•-•2 ýo-- +ýO a z-22 +-&ea z. 1 ýJe+toa(z . + Z Z (30)

It is further at level z 0

3z a_ 9z ay G G ay (31)

so that

I e 'KI 1 a (32)

%az • y "y T Co~ge

Under consideration of

CC - 2VT h(r) X.33

it is

- [h( r) Y -r)(. " ) - h crs +Y' sin•a (34)
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The final results are hereafter
3c ct hah

& Q (r sin2  - cos 220)(z 1 + Z2) (35)•; (r, OL, z11 z2) N•"/2"2 G r +r

3 a ag h ah

71n-- (r, a, z , z 2 ) : Ts"• - (r COs2a + - sin 2 )az1 + Z2) (36)

where 04 and Cnn represent the planar covariance functions Tote and non.)

respectively, and where Oga oqg(VaYjg)

In analogy with equation (30), it is

S1g2 = Yg0- -A + Ag 9 Z ( z1 + z2 ) (37)

Under utilization of the planar approximation

a_- + an) (38)

it is

(__ + a)y= -- 00e* a e) (39)

With the aid of equation (33), equation (39) can be formulated as

e +3ne 3oo a h ah
"- + )= -G (r +-) (40)

Accordi ng iy,

2 g 3G (!og h ah
Tg! (r, Yz ) - - ( + ) (z + z ) (41)

-2 Z'Z) 9 r ar 1 2

where *gg Ago0 ge.

It is evident from equations (35), (36). and (41) that these represent convenient

closed approximations of the three spatial covariance functions of particular

interest. In general, the planar covariance functions should apply to the lowest

z-level in a particular area of application.
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5. CONCLUSION. The immediate accurate interpolation of gravity anomalies

and deflections of the vertical in mountainous terrain is only possible from

data provided in a grid of high resolution. Optimal interpolation from data

given at points separated by distances of the order 5-10 km or from multiple

data incorporating measurement noise with shorter spacing can be accomplished

by an appropriate representation of gravity anomalies and deflections as a

signal-noise process with nonstationary noise computable from the earth's

topography. In the case of deflections, a special solution of the geodetic

boundary value problem is required. As a first approximation, Faye anomalies

may be used as signal variables. Isostatic anomalies modified by the indirect

effect provide a greater degree of homogeneity and isotropy. Implementation

of the theory requiresthe utilization of existing "isostatic" computer programs

and the establishment of a supplemental program under consideration of

furnished analytical solutions. Signal estimation has to be facilitated by

the use of spatial covariance functions first order approximations of which

may be computed relatively easy from planar covariance expressions. The

optimal interpolation method in conjunction with the special solution for

deflections indicates that iterative or series solutions of the boundary

value problem of physical geodesy cannot be expected to converge in mountainous

terrain. The method developed is of practical significance for the

densification of gravity anomaly and astrogeodetic deflection networks in

mountainous terrain and is also valuable or indispensable, respectively, for

the optimal estimation of gravity anomalies and deflections from astrogeodetic

and inertial data in mountainous areas.
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A sequential k-Group Raindcml Allocation ,Method

Swith Applicatio.'.S to Simulation

Andrew P. Soms

Abstract

A sequential method of randcm allocation is given and it is

shown how it can be used to estimate the observed significance

levels of k-sample nonparametric tests. The sequential technique

is compared to the standard randc- allocation technique and

shown to bc more efficient. An application is made to the Dunn-

Bonferroni method of multiple comparisons.
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1 1. The Sequential Allocation Method
-iv

Bebbington (1975) showed that if there were N objects (such

as file cards) from which it was desired to select (without

replacement here and throughout) a random sample of size k without

numbering the N objects, then one could proceed sequentially by

selecting the first object with probability k/N and if at the Th

stage s have been selected, then the T+l-t object is selected with

probability (k-s)/(N-T), T 1,2,...,N-I.

We now state and prove the extension to an arbitrary number

of groups. Suppose there are N objects and it is desired to

sequentially divide them randomly into r groups of size
r

klfk 2 ,...,k, r k. N, i.e., each allocation has probability

1Let slT"'-*rT be the number of objects selected

for groups 1,2,...,r at the Tth stage and let Pi,T+l denote the

selection probability for group i at the T+Ist stage. Then if

Pi,T+l = (ki-siT)/(N-T), T=Ol,...,N-1 , (1.1)

r
the selection is random. Note that P = IN and P = 1.i'li ,T+I

The randomness follows immediately by noting that the probability

of a particular assignment is

ri .)ki!J/N! = N/[kl,.N.,kr)

Bebbington's (1975) result is a special case of the above

when r =2.

As an example, suppose r =3, k = 2, k 2 = 2, k 3 = 3 and N -7.

In order to make the sequential allocation given by (1.1) we take
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'7 independent random ilumbcrs I i ± 1,2,...,?. Lot
0 n P T' i = 1,2,...,r, T - 1,2,9.o.,N.O0,T = n i,T = j #T '"

Then the mth object, m = 1,2,...,N, is assigned to group n, where

n is the unique integer such that
*(U m<On

Qn-l,m <m-ý n , in

S Suppose the 7 random numbers arq...79039, .01850, .99744, .81812,

.93169, .22705, and .97709. The selection process is summarized

in Table 1.

1. Selection Process

Random P Group
Stae .Digit 1T 2__T 3T Selected

1 .79039 2/7 2/7 3/7 3

2 .01850 2/6 2/6 2/6 1

3 .99744 1/5 2/5 2/5 3.

4 .81812 1/4 2/4 1/4 3

5 .93169 1/3 2/3 0 2

6 .22705 1/2 1/2 0 1

7 .97709 0 1 0 2

Note that if all, the ki s are one, a random permutation is

produced if we think of the group as denoting position.
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7 independent random numbers Li, i 1,2,...,7. Lot

00, = 0 and Q iv C 'P j,'i = 1,2,..r, T ©12 N

Then the mth object, M = 1,2,...,N, is assigned to group n, where

n is the unique integer such that

0n-1l,m < Um - n,m

E Suppose the 7 random numbers arq...79039, .01850, .99744, .81812,

.93169, .22705, and .97709. The selection process is summarized

in Table 1.

1. Selection Process

Random p p Group

Stage Digit IT 2T 3T Selected

1 .79039 2/7 2/7 3/7 3

2 .01850 2/6 2/6 2/6 1

3 .99744 1/5 2/5 2/5 3.

4 .81812 1/4 2/4 1/4 3

5 .93169 1/3 2/3 0 2

6 .22705 1/2 1/2 0 1

7 .97709 0 1 0 2

Note that if all the ki s are one, a random permutation is

produced if we think of the group as denoting position.
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2. Applications to Simulation

In k-sample nonparametric tests the observed significance

level of the test is obtained by considering all possible parti-

tions M of the (possibly tied) observed values or (possibly

average) ranks into r groups, computing the value of the test

statistic, and counting the number of times m it is equal to or

greater than the observed value. The observed significance level

is then m/M. When the number of partitions is large this is

prohibitive and Q is estimated either by simulation (taking a

large random sample of the allocations) or by asymptotics. The

advantage of simulation is that one can control the accuracy of

the estimate (by taking a large or small random sample) depending

on the importance of the situation, unlike asymptotics which each

time it is used forces one into the straight-jacket of committing

a usually unknown error. Since it is (perhaps regrettably) a well

known fact that different actions will be taken for close values

of u, one above and the other below some fixed level (e.g., .01,

.05, or .1) of the decision-maker, the use of simulation at least

rrevents approximating error in U to be the determining factor.

If it is dccided to use simulation, then a possible procedure

is to make the random assignment as described in Section 1 many

times by using a computer. The commonly used method is to produce

a random permutation by ordering a random sample of uniform num-

bers and choosing the first k indexes for group 1, the next k 2

for group 2, and so on. If all the ki 's are one, then this is

more efficient than Section 1. However, as soon as the ki s

depart even moderately from 1, the method of Section I becomes

much more efficient. As an example, if k = k 2 =k3 =k4 =10 and it
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is desired to make 2000 random assignments using a UNIVAC 1110 computer,

a FORTRAN program using the methods of Section 1 uses 4.71 seconds of

CPU time while a FORTRAN program using the random permutation method

takes 9.17 seconds.

The Appendix contains a listing of the FORTRAN subroutine

RANDM that uses the theory of Section 1 to make random assignments.

This may be tied in with any specific simulation problem, e.g.,

the case treated in Section 3.-.

3. Applications to the Dunn-Bonferroni Method

of Multiple Comparisons

The D-B (Dunn-Bonferroni) method is described in Dunn (1964).

Briefly, let Yij, i= 1,2,...,r, j= 1, 2 ,...,ni, be continuous (this

assumption is not important and is removed later) random variables

with distribution function Fi, H0: F1 =F2= ... =Fr' Ha: for at

least one pair (i,j), F.i F. i.n the sense of producing larger or

smaller values), and the test must identify which, if any, pairs

are different. Denote by za the upper a -- point of the standard

normal. The D-B test declares all those pairs (i,j), i <j,

different for which

z = it /(N)(N+l) _ + _> z /(k(k-l)) , (3.1)

where R. denotes the average of the ranks of the it- group in the

joint ranking. The nominal significance level of this procedure

is a. The actual significance level aA is

a 1A I P0Max > z,/(k(k-l)) (3.2)

and may be obtained by simulation based on Section 1. Table 2

* gives some comparisons of nominal with actual, using Section 1 and

1 0,000 simulations. 569



2. Co:,jp'riron of ACtk)4J. to Noinal C_

-o:o•Lo n
S_•r C ouu_ Si e Nominal C Actual C

3 .05 .037

3 J0 .05 .040

3 15 .05 .043

3 30 .05 .045

3 5 .01 .0030

3 10 .01 .0077

3 15 .01 .0077

3 30 .01 .010

5 5 .05 .026

5 10 .05 .036

5 5 .01 .0030

5 10 .01 .0067

The APpendix contains a listing of the program used for Table 2.

It thus appears that D-B is :onservative and we can remove the

conservatism by substituting for z a/(k(k-l)) d (i), where d(i),

i=l,2,...,r(r-l)/2, is the ith largest observed values of Zij,

i 4j, to obtain by simulation the r(r-1)/2 possible observed

zignificance levels.

The K-S (Kruskal-Scheff4) method is also sometimes used in

this situation (see, e.g., Miller, 1966, p. 166) and consists of
1/2 2 1/2

replacing z /(r(r-1)) in (3.1) with h (x ) , where
a a OL; r-r

Sis the upper a th point of X2 with r-l degrees of freedom.

The comparison of the critical constants in Table 3 shows that
this is even more conservative than D-B.
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3. Comparison of D-B and K-S Critical Constants

r z 0 5 /(r(r-l)) (X205;rl) / 2 z./(r(r-1)) (x2/2

05 .5,r- 01X 0i;r-.I )

3 2.39 2.79 2.94 3.36

4 2.50 3.08 3.02 3.65

5 2.58 3.33 3.09 3..89

6 2.64 3.55. 3.15 4.10

7 2.69 3.75 3.19 4.30

8 2.74 3.94 3.23 4.48

9 2.77 4.11 3.26 4.66

10 2.81 4.28 3.29 4.82

If-the data is discrete, the D-B method can be modified as

in Dunn (1964) and the random assignment done on average ranks.

Thus ties present no problems in this approach.

The third method discussed in Miller (1964), the Steel many-

one rank statistics, is too time-consuming for the simulation

approach. For all practical purposes the exact D-B (use of the

d W and simulation) seems the best method to use.
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